Comet 67P/C-G’s fractured surface

Please consider donating to Behind the Black, by giving either a one-time contribution or a regular subscription, as outlined in the tip jar to the right. Your support will allow me to continue covering science and culture as I have for the past twenty years, independent and free from any outside influence.

Rosetta scientists today published a paper describing the many different types of fractures they have identified on the surface of Comet 67P/C-G.

Ramy’s team identified three distinct settings in which the fractures occur: networks of long narrow fractures, fractures on cliffs and fractured boulders. In addition, several unique features were identified: the parallel fractures running across Hathor’s 900 m-high cliffs, an isolated 500 metre-long crevice in the Anuket region of the comet’s neck, and a 200 m-long complex crack system in Aker on the large lobe. “The fractures show a variety of morphologies and occur all over the surface and at all scales: they are found in the towering 900 m-high cliffs of Hathor right down to the surfaces of boulders a few metres across,” describes lead author M. Ramy El-Maarry from the University of Bern.

The most prevalent setting appears to be networks of narrow fractures that extend for a few metres to 250 m in length, typically on relatively flat surfaces. Interestingly, in some locations, the fractures appear to cross cut each other in polygonal patterns at angles of 90º – on Earth and Mars this is often an indicator of ice that has contracted below the surface.

While their focus is on the geology of the comet and its development as indicated by the fractures, what I see is the root cause of the comet’s eventual destruction. Its two-lobed shape is inherently unstable, and these fractures illustrate this. At some point, the comet will break apart. The fractures indicate where the first breaks might occur.

Leave a Reply

Your email address will not be published. Required fields are marked *