An infrared view of the Crab Nebula by Webb

Webb's image of the Crabb compared to Hubble's
Click for original image.

Using the Webb Space Telescope astronomers have taken the first detailed infrared image of the Crab Nebula, the remnant from a supernova that occurred in 1054 AD.

The two pictures on the right compare Webb’s false color infrared view with a natural light Hubble image in optical wavelengths, taken in 2005. From the press release:

The supernova remnant is comprised of several different components, including doubly ionized sulfur (represented in red-orange), ionized iron (blue), dust (yellow-white and green), and synchrotron emission (white). In this image, colors were assigned to different filters from Webb’s NIRCam and MIRI: blue (F162M), light blue (F480M), cyan (F560W), green (F1130W), orange (F1800W), and red (F2100W).

In comparing the images, it appears the scientists chose colors for the Webb image to more or less match those of Hubble’s natural color picture. However, as the press release notes:

Additional aspects of the inner workings of the Crab Nebula become more prominent and are seen in greater detail in the infrared light captured by Webb. In particular, Webb highlights what is known as synchrotron radiation: emission produced from charged particles, like electrons, moving around magnetic field lines at relativistic speeds. The radiation appears here as milky smoke-like material throughout the majority of the Crab Nebula’s interior.

This feature is a product of the nebula’s pulsar, a rapidly rotating neutron star. The pulsar’s strong magnetic field accelerates particles to extremely high speeds and causes them to emit radiation as they wind around magnetic field lines. Though emitted across the electromagnetic spectrum, the synchrotron radiation is seen in unprecedented detail with Webb’s NIRCam instrument.

The release also notes this remarkable but somewhat unfortunate fact:

Scientists will have newer Hubble data to review within the next year or so from the telescope’s reimaging of the supernova remnant. This will mark Hubble’s first look at emission lines from the Crab Nebula in over 20 years, and will enable astronomers to more accurately compare Webb and Hubble’s findings.

In 2005 repeated Hubble images of the Crab revealed that its filaments and radiation were stormy, with constant activity. The scientists actually produced a movie of those changes. It was expected that new images would be taken at regular intervals to track that activity. Apparently it was not, either because no scientist was interested or the committee that assigns time on Hubble decided this wasn’t important enough reseach.

Chandra looks back at the Crab Nebula

Link here. It is almost twenty years since the Chandra X-Ray Observatory was launched, and in celebration the science team have released another X-ray image of the Crab Nebula, taken in 2017 in league with an optical image from the Hubble Space Telescope and an infrared image from the Spitzer Space Telescope. They have also provided links to all similar past images, going back to 1999.

Some of the images are actually videos, in 2002 and 2011, showing the Crab’s dynamic nature. You can actually see flares and waves of radiation rippling out from its center.

New multi-wavelength image of Crab Nebula

Crab Nebula

Cool image time! The image on the right, reduced and cropped to show here, was created in November 2012 using a number of different telescopes, both on the ground and in space, to image the Crab Nebula in as much of the entire electromagnetic spectrum as possible.

This image combines data from five different telescopes: The VLA (radio) in red; Spitzer Space Telescope (infrared) in yellow; Hubble Space Telescope (visible) in green; XMM-Newton (ultraviolet) in blue; and Chandra X-Ray Observatory (X-ray) in purple.

Be sure to check out the full image at the Hubble website. It is packed with fascinating details you need to zoom in to to see.

New Hubble image of Crab Nebula

Crab Nebula

Cool image time! Scientists have released a new Hubble Space Telescope image taken of the innermost regions of the Crab Nebula, the remains of a supernova explosion that took place a thousand years ago in 1054.

On the right is a reduced resolution version of this new image. I have also cropped it to focus on the nebula’s center, where the pulsar is located. The circular concentric rings are exactly what they appear to be, ripples of energy spreading out from the pulsar. Back in 2002 Hubble took a series of images of the Crab Nebula over several days, which scientists then assembled into a movie showing these waves as they emanated out from the nebula’s center.

My only complaint with this beautiful new image is that they did not take a longer series of new exposures to create a longer movie, to better show the actual daily changes that the nebula undergoes. It seemed obvious to do then, and obvious to do now. Yet, it hasn’t happened.

The image download page for today’s release is here.

Unknown objects in space

Fermi list of object types

NASA’s Fermi Gamma-Ray Telescope today released an updated catalog of the last two years of its survey of the sky at high energy emissions. All told, there are 1873 objects in the catalog, more than half of which are supermassive black holes at the center of distant galaxies. You can see this all-sky map below the fold.

Many of the objects are quite familiar, such as the Crab Nebula, the remnant of a supernova that exploded a little less than a thousand years ago.

For decades, most astronomers regarded the Crab Nebula as the steadiest beacon at X-ray energies. But data from several orbiting instruments — including Fermi’s Gamma-ray Burst Monitor — now show unexpected variations. Astronomers have shown that since 2008, the nebula has faded by 7 percent at high energies, a reduction likely tied to the environment around its central neutron star.

Since 2007, Fermi and the Italian Space Agency’s AGILE satellite have detected several short-lived gamma-ray flares at energies hundreds of times higher than the nebula’s observed X-ray variations. In April, the satellites detected two of the most powerful yet recorded. To account for these “superflares,” scientists say that electrons near the pulsar must be accelerated to energies a thousand trillion times greater than that of visible light — and far beyond what can be achieved by the Large Hadron Collider near Geneva, Switzerland, now the most powerful particle accelerator on Earth.

What I, and many astronomers, find even most interesting about this catalog, however, is the large number of completely mysterious objects scattered across the sky, objects that emit powerful gamma rays but are not visible in any other wavelengths. All told, these unidentified objects comprise almost one third of the entire catalog.
» Read more

The Crab Nebula erupts with flares six days

In mid-April the Crab Nebula erupted for six days, repeatedly emitting the most powerful flares ever recorded from the supernova remnant.

Scientists think the flares occur as the intense magnetic field near the pulsar undergoes sudden restructuring. Such changes can accelerate particles like electrons to velocities near the speed of light. As these high-speed electrons interact with the magnetic field, they emit gamma rays.

To account for the observed emission, scientists say the electrons must have energies 100 times greater than can be achieved in any particle accelerator on Earth. This makes them the highest-energy electrons known to be associated with any galactic source. Based on the rise and fall of gamma rays during the April outbursts, scientists estimate that the size of the emitting region must be comparable in size to the solar system.