Want to discover gravitational waves? You can!

The citizen science project, Einstein@home, will begin providing its participants data from the upgraded LIGO gravitational wave detector beginning March 9.

Rather than looking for dramatic sources of gravitational waves, such as the black-hole merger that LIGO detected on 14 September, Einstein@home looks for quieter, slow-burn signals that might be emitted by fast-spinning objects such as some neutron stars. These remnants of supernova explosions are some of the least well understood objects in astrophysics: such searches could help to reveal their nature.

Because they produce a weaker signal than mergers, rotating sources require more computational power to detect. This makes them well-suited to a distributed search. “Einstein@home is used for the deepest searches, the ones that are computationally most demanding,” Papa says. The hope is to extract the weak signals from the background noise by observing for long stretches of time. “The beauty of a continuous signal is that the signal is always there,” she says.

To participate all you have to do is let their software become your screensaver, doing its work whenever you walk away from your computer.