ESA to issue contract for new lander for its Franklin Mars rover

According to the head of the European Space Agency (ESA), it plans to issue a contract for new lander for its Franklin Mars rover in the next few months, replacing the Russian lander that was lost when ties with that country were broken after it invaded the Ukraine.

Josef Aschbacher, the director general of the European Space Agency (ESA), says the agency will soon release a contract opportunity to design the ExoMars mission’s lander, to replace the Russian one lost when their partnership severed in 2022. “We will issue a contract for the development of the lander, and this will go out soon, in the next few months or so,” Aschbacher told Space.com July 1, hours after the Euclid “dark universe” mission launched here. “This is all in full preparation.”

Aschbacher’s wording is vague enough to leave open the possibility that ESA is considering hiring one of the many private companies from the U.S. and Japan to build it. It is also possible it is waiting to see if India’s Chandrayaan-3 lands successfully on the Moon after its launch this week. If so, India could possibly get that contract.

The present targeted launch date for Franklin is 2028, so there is plenty of time for another lander to be built.

ESA asks member nations to build lander for Franklin Mars rover

In its most recent request for funding from the member nations of the European Space Agency (ESA), the agency has asked the member nations to finance the design and construction of a new lander for its long delayed Rosalind Franklin Mars rover, replacing the Russian lander that had became unavailable due to sanctions resulting from Russia’s invasion of the Ukraine.

According to the BBC (opens in new tab), ESA will request 360 million euros to kickstart work on the new landing system, with additional funds likely needed in subsequent years. ESA has already spent some 1.3 billion euro on the ExoMars program, which also includes an orbiter that has been studying Mars’ atmosphere and surface since 2017. ESA will put the plan in front of delegates of its 22 member states at a ministerial conference in November.

“We will have to wait if the [member states] decide to go forward with the project,” Parker said. “This concept is now proposed as part of the director general’s package within [ESA’s] exploration program for decision at the ministerial [conference].”

If ESA’s member nations agree to this plan, expect the launch of Franklyn to be delayed further. Based on the normal pace in which ESA functions, that lander will take a minimum of five years to design and build (likely much longer). Though ESA is now targeting ’28 for the launch of Franklin, which was supposed to launch this past summer after a two year delay, this plan likely means it will not get off the ground this decade.

Meanwhile, there are now at least a half dozen private companies building lunar landers that could more quickly (and for less money) get a Franklin Mars lander built for ESA. None are in Europe however, which means ESA would rather have this mission delayed years so that it can funnel money to its own contractors..

Roscosmos forbids its astronauts from using Europe’s robot arm

In response to the final decision this week by the European Space Agency to officially end its cooperation with Russia on its ExoMars mission, Roscosmos today forbid its astronauts from using Europe’s new robot arm that was recently installed on the Russian Nauka module of ISS.

Russia’s crew onboard the International Space Station (ISS) will stop using the European ERA manipulator arm in response to the European Space Agency’s (ESA) refusal from cooperation on the ExoMars project, CEO of Russia’s state space corporation Roscosmos Dmitry Rogozin said on Tuesday.

“In my turn, I instruct our ISS crew to stop using the European Robotic Arm (ERA). Let [ESA Director General Josef] Aschbacher along with his boss [EU foreign policy chief Josep] Borrell fly to space and do at least something useful in their entire lives,” he wrote on his Telegram channel.

The arm was designed to work on the Russian part of ISS, so it appears this decision by Rogozin is an example of someone cutting off his nose to spite his face. It essentially reduces Russia’s capabilities on the station.

As for ExoMars, it is unclear what will happen to the lander that Russia built to put Europe’s Franklin rover on Mars. Roscosmos has said it might proceed with its own mission to Mars, using that lander, but it has not made the full commitment to do so.

Russia proposes restart of ExoMars partnership with ESA

Russia’s aerospace corporation Roscosmos has proposed to the European Space Agency (ESA) that its partnership to launch and land ESA’s Franklin rover on Mars be renewed, despite the Ukraine War and Roscosmos’ confiscation of 36 OneWeb satellites.

[According to Roscosmos head Dmitry Rogozin] the equipment and Kazachok landing platform for the mission have the potential for launch in 2024. “ESA colleagues promised to make requests to their patrons, who are ESA member states. If they cooperate and give their consent, the mission may be implemented,” Rogozin said.

He estimates the likelihood of this scenario to be at about 708%. [sic] Roscosmos plans to get the response in late June. [emphasis mine]

It would not be surprising if ESA made this deal, despite its stupidity. Roscosmos’ actions recently, especially related to OneWeb, prove the people running it are very untrustworthy business partners. Yet Europe’s historic willingness to deal with the devil for short term gain — eventually and repeatedly leading to overall disaster — is legendary.

ESA: ExoMars will likely be delayed till ’28 at the soonest

An official of the European Space Agency (ESA) at a May 3rd science meeting announced that the launch of its ExoMars rover will likely be delayed until 2028 at the earliest because of the partnership breakup with Russia due to its invasion of the Ukraine.

Russia had been providing both the launch rocket as well as the lander on Mars.

Speaking at a May 3 meeting of NASA’s Mars Exploration Program Analysis Group (MEPAG), Jorge Vago, ExoMars project scientist at ESA, said he doubted a new lander could be ready by 2026. “It is theoretically possible, but in practice we think it would be very difficult to reconfigure ourselves and produce our own lander for 2026,” he said. “Realistically, we would be looking at a launch in 2028.”

Launching in 2028 could pose technical challenges for ExoMars. One trajectory would get the rover to Mars relatively quickly, but have it arrive just a month before dust storm seasons starts at the preferred landing site. An alternative trajectory would require traveling for more than two years to each Mars, but get the rover there six months before dust storms start.

“We have been trying very hard to convince the engineering team that the dust storm season is not death,” Vago said. “We should concentrate on making the rover more robust and able to weather a dust storm.”

There are other issues. The rover will need new radioisotope heating units, or RHUs, to provide power, since Russia will no longer providing them. If the U.S. provides, the launch for security reasons will have to take place in the U.S., which means the launch provider will have to be American.

The delay to ’28 also could cause the ExoMars rover mission to be completely changed, repurposed to become part of the sample return mission that the ESA and NASA are partnering to bring back the cached samples that Perseverance is gathering. If so, this repurposing might delay its launch to Mars even further.

ESA makes official the split with Russia

At a press conference yesterday officials from the European Space Agency (ESA) officially announced that the partnership with Russia to launch its Franklin rover to Mars has ended, and the launch will not happen in ’22.

The program is not cancelled, but “suspended.” ESA is looking for alternatives to get its Rosalind Franklin rover to the Red Planet. Earth and Mars are correctly aligned for launches only every 26 months, so the next opportunities are in 2024, 2026, and 2028. Aschbacher said it is not feasible to be ready by 2024, so it will be one of the later dates.

Since Russia had been providing both the launch rocket and Mars lander, ESA cannot simply find a different rocket. It needs to come up with its own lander, or find someone else to build it. For example, one of many new private American companies building lunar landers for NASA might be able do it, though ESA would likely prefer a European company. If it did decide to go with an American company, it would certainly not hire one until it succeeds in completing successfully at least one planetary landing.

The officials also outlined ESA’s need to find new launch rockets for many other missions it had planned to launch on Russia’s Soyuz-2 rocket. That need will also be an opportunity for American rocket companies, but more significantly it could be a blessing for Arianespace’s Ariane 6 rocket. The Ariane 6 has struggled to find customers because of its high cost. The loss of Russia as a launch option will likely drive some ESA business to it.

Roscosmos’ head Dmitry Rogozin in turn announced that it will go ahead with its own Mars mission, using the lander on an Angara rocket

“True, we will lose several years, but we will replicate our landing module, make an Angara rocket for it and carry out this research mission from the newly-built Vostochny spaceport on our own. Without inviting any ‘European friends’, who prefer to keep their tails between their legs the moment they hear their American master’s angry voice,” Rogozin said on his Telegram channel.

Whether Russia will actually do this is questionable. For the last two decades Roscosmos has promised all kinds of numerous planetary missions and new rockets and new manned capsules, none of which has ever seen the light of day. To make such a thing happen now seems even more doubtful.

ESA: ExoMars launch in ’22 “very unlikely” due to Russian invasion of the Ukraine

In a statement yesterday condemning Russia’s invasion of the Ukraine and responding to the Russians’ decision to suspend cooperation with Arianespace in French Guiana, the European Space Agency (ESA) also admitted, almost as an aside, that the ExoMars launch in ’22 to Mars is now “very unlikely.”

That mission is a partnership with Russia, where the Russians provide the rocket and the lander that will put Europe’s Franklin rover on the surface.

For the scientists running ExoMars, this delay only adds to their frustration, as the mission has already been delayed several times, most recently from a ’20 launch because the lander parachutes — being built by ESA — were not ready.

Scientists discover underground reservoir of hydrogen, likely ice, near Martian equator

Detection of underground hydrogen in Valles Marineris
Click for full image.

In what could be a very significant discovery, scientists using Europe’s Trace Gas Orbiter (TGO) have discovered a surprisingly large underground reservoir of hydrogen, likely ice, near Martian equator and inside the solar system’s largest known canyon, Valles Marineris.

The map to the right, reduced to post here, provides all the important data. From its caption:

The coloured scale at the bottom of the frame shows the amount of ‘water-equivalent hydrogen’ (WEH) by weight (wt%). As reflected on these scales, the purple contours in the centre of this figure show the most water-rich region. In the area marked with a ‘C’, up to 40% of the near-surface material appears to be composed of water (by weight). The area marked ‘C’ is about the size of the Netherlands and overlaps with the deep valleys of Candor Chaos, part of the canyon system considered promising in our hunt for water on Mars.

What the caption does not note is the latitude of this hydrogen, about 3 to 10 degrees south latitude. Assuming the hydrogen represents underground ice, this would be the first detection on Mars below 30 degrees latitude, and the very first in the equatorial regions. Data from orbit has suggested that Mars has a lot of water ice, found near the surface more and more as you move into higher latitudes above 30 degrees and making Mars much like Antarctica. Almost no ice however had until now been detected below 30 degrees latitude. As the European Space Agency’s press release noted,
» Read more

More parachute problems for Europe’s Franklin Mars rover

During a parachute drop test in late June, following a redesign of the parachute with U.S. help, engineers for the ExoMars Rosalind Franklin Mars rover found the chute still experienced problems that tore it during deployment.

They actually performed two drop tests, a day apart, using two different parachutes, with the first test apparently going off without a hitch. However, according to the press release:

“The performance of the second main parachute was not perfect but much improved thanks to the adjustments made to the bag and canopy. After a smooth extraction from the bag, we experienced an unexpected detachment of the pilot chute during final inflation. This likely means that the main parachute canopy suffered extra pressure in certain parts. This created a tear that was contained by a Kevlar reinforcement ring. Despite that, it fulfilled its expected deceleration and the descent module was recovered in good state.”

I have embedded below the fold the only video released by the European Space Agency. It is not clear whether this is from the first or second test. Near the end it appears that the pilot chute above the main chute might be separated, but the video ends before that can be confirmed.

Though ESA has apparently improved the chute’s performance significantly since its earlier failures that contributed to the delay of ExoMars from last year to 2022, they still haven’t gotten the chute completely right. Fortunately they still have time to get it fixed before that ’22 launch.
» Read more

ESA completes new parachute test for its 2022 Mars rover

On November 9, 2020 the European Space Agency finally conducted the high altitude parachute test of the landing system for its 2022 Mars rover Rosalind Franklin that had been planned for March but had been delayed due to the Wuhan flu panic.

The timeline of the latest test, including extraction and deceleration, went exactly to plan. However, four tears in the canopy of the first main parachute and one in the second main parachute were found after recovery. The damage seemed to happen at the onset of the inflation, with the descent otherwise occurring nominally.

The team are now analysing the test data to determine further improvements for the next tests. Planning is underway for future tests in the first half of next year, to ‘qualify’ the complete parachute system ready for launch in September 2022.

Overall they consider the test a success, though the damage issues must be solved before the ’22 launch. Based on this test it also appears that the ESA made a very wise choice delaying the mission from launch this year, as its parachute system was clearly not ready.

ESA asks NASA’s help on ExoMars rover parachute problems

The European Space Agency (ESA) has asked for help from NASA in trying to figure out the cause of the failures during testing of the parachutes they want to use to safely land their ExoMars 2020 rover, Rosalind Franklin.

So far the parachutes have been damaged on all previous tests. They plan two more tests in December and February.

Both tests, to be held at high altitude to simulate the Martian atmosphere, need to succeed in order for the parachutes to pass qualification. TheExoMars mission faces a final review scheduled April 2020, Francois Spoto, ExoMars program manager, told SpaceNews. “Now the situation is critical, of course, because we have limited time and no margin,” Spoto says.

If one of the tests fails, the ExoMars mission will miss the narrow July 25 to Aug. 13 launch window next year and slip to the next window, in late 2022. The lander and rover segments are meanwhile progressing well and ready for environmental testing.

They held a workshop on the previous failures, and obtained new analysis of the causes from JPL engineers.

Assembly complete on Europe’s Franklin Mars rover

Engineers have completed the assembly of Europe’s Rosalind Franklin rover that is scheduled for launch to Mars in July 2020

Rosalind Franklin, which is the result of cutting edge work from UK, European and Canadian scientists and engineers will now be shipped from the Airbus factory in Stevenage, Hertfordshire to Toulouse in France for testing to ensure it survives its launch from Earth next summer and the freezing conditions of Mars when it lands on the planet in March 2021.

Whether they can meet this schedule remains unknown because of the problems that occurred during testing of the spacecraft’s landing parachutes.

Reports of another ExoMars parachute failure during test

Following a failure of ExoMars’ parachutes during a May test, there are now reports that a second failure occurred on August 5.

A fresh test of the parachute system for the Russian-European mission ExoMars-2020 have failed again as a structural mockup of the Russian-built lander crashed during the simulated landing, a source familiar with the test results told Sputnik.

The test with the use of a high-altitude balloon was carried out on August 5 at a Swedish Space Corporation’s test site in northern Sweden.

“Tests of the parachute system at the Esrange test site in Sweden failed. A full-size mockup of the landing module of the ExoMars-2020 Martian station crashed during the landing,” the source said.

I have seen this report in two other sites, but it has not yet been confirmed by the European Space Agency.

If these reports are true, the chances of ExoMars launching in July 2020 is likely almost nil. They haven’t even begun assembling the spacecraft, and have had two parachute failures in tests, with the second destroying the prototype used for those tests.

Europe inaugurates ExoMars control center

The Europe Space Agency yesterday inaugurated the control center where it will control and download data from the ExoMars rover, Rosalind Franklin, scheduled to launch to Mars in the summer of 2020.

The control center also includes a dirt filled enclosure where they can simulate Martian conditions with a rover model.

The article outlined the project’s upcoming schedule:

Over the summer the rover will move to Toulouse, France, where it will be tested in Mars-like conditions. At the end of the year Rosalind Franklin will travel to Cannes to meet the landing and carrier modules for final assembly.

As I noted yesterday in my most recent rover update, this assembly, only six months before launch, gives them very little margin. If there are any problems during assembly, they will likely miss the 2020 launch window.

I also wonder if this will allow them any time to do acoustical and environmental testing, as was just completed on NASA’s 2020 rover, to make sure ExoMars can survive launch, landing, and the journey to Mars. If they forego those tests, they might discover after launch that they were launching a paperweight, not an expensive planetary probe.

New data says going to Mars involves significant radiation exposure

New data from Trace Gas Orbiter, part of Europe’s ExoMars project, says a journey to Mars will expose humans to significant radiation.

The results imply that on a six-month journey to the Red Planet, and assuming six-months back again, an astronaut could be exposed to at least 60% of the total radiation dose limit recommended for their entire career.

The ExoMars data, which is in good agreement with data from Mars Science Laboratory’s cruise to Mars in 2011–2012 and with other particle detectors currently in space – taking into account the different solar conditions – will be used to verify radiation environment models and assessments of the radiation risk to the crewmembers of future exploration missions.

This data was gathered during the spacecraft’s journey to Mars during a time of falling solar activity. Thus, the radiation exposure came more from cosmic rays than from solar activity.

Software error caused Schiaparelli crash

A new ESA report says that the ExoMars 2016 Schiaparelli lander failed because its navigation system thought the lander was on the ground when it was still more than two miles from the surface.

Europe’s Schiaparelli Mars lander crashed last month after a sensor failure caused it to cast away its parachute and turn off braking thrusters more than two miles (3.7 km) above the surface of the planet, as if it had already landed, a report released on Wednesday said.

Figuring out what caused this failure will be helpful for the design of the ExoMars 2020 rover, but the failure here is likely going to make it more difficult for Europe to raise the money needed for that next mission, including a 400 million euro cost overrun.

Russia and ESA in money dispute

A money dispute between Russia and France could threaten the ESA/Russian ExoMars partnership, as well as the Arianespace deal that launches Soyuz rockets from French Guiana.

In what appears to be an attempt to force France’s European neighbors to apply pressure to Paris, Roscosmos hinted that multiple cooperative space efforts between Russian and the European Union, and with the European Space Agency (ESA), could suffer if the payments are not freed. The payments, which are not disputed by Arianespace, have been one of the collateral effects of the battle by former shareholders of Russia’s Yukos oil company. In 2014, these shareholders won an initial award of $50 billion from an international arbitration panel in The Hague, Netherlands, against the Russian government for dismantling the company.

Since then, the shareholders have been trying to collect Russian government assets wherever they find a sympathetic legal environment outside Russia, including France and Belgium. In France, different shareholder representatives sought seizure of the Eutelsat and Arianespace payments. The same dispute has blocked payments to other Russian companies. Paris-based satellite operator Eutelsat owes Russia’s biggest satellite operator, Russian Satellite Communications Co. (RSCC) of Moscow, around $300 million for services related to Eutelsat use of RSCC satellites.

Russia needs cash, which is why they need their partnership with Arianespace, which has brought them a lot of cash over time. Their problem is that the money owed the Yukos oil company shareholders has allowed those shareholders to put liens on any Russian earnings in Europe, which has only increased Russia’s financial bind. If Russia can’t get its hands on its Arianespace earnings, then it really makes no sense for them to continue the partnership. Better to threaten to pull out with the hope that the threat will maybe force payment.

Moreover, Russia might also be realizing that it cannot at present afford to participate in ExoMars and is looking for a way to get out of that commitment. This money dispute gives them that out.

Schiaparelli failure focuses in on altimeter data

The investigation into the landing failure last week of the ExoMars 2016 lander, Schiaparelli, is now focusing on a failure in the spacecraft’s altitude software.

The most likely culprit is a flaw in the craft’s software or a problem in merging the data coming from different sensors, which may have led the craft to believe it was lower in altitude than it really was, says Andrea Accomazzo, ESA’s head of solar and planetary missions. Accomazzo says that this is a hunch; he is reluctant to diagnose the fault before a full post-mortem has been carried out. But if he is right, that is both bad and good news.

European-designed computing, software and sensors are among the elements of the lander that are to be reused on the ExoMars 2020 landing system, which, unlike Schiaparelli, will involve a mixture of European and Russian technology. But software glitches should be easier to fix than a fundamental problem with the landing hardware, which ESA scientists say seems to have passed its test with flying colours. “If we have a serious technological issue, then it’s different, then we have to re-evaluate carefully. But I don’t expect it to be the case,” says Accomazzo.

ExoMars 2016 bearing down on Mars

This article provides a detailed look at Sunday’s arrival of ExoMars 2016 at Mars.

If all goes right the Schiaparelli lander will soft land on the surface while the Trace Gas Orbiter will enter an initial 185 by 60,000 mile orbit, which will slowly be adjusted so that by January it can begin its atmospheric research.

Though the Russian contribution to this mission was only the rocket that sent it to Mars, if the mission succeeds it will be the first time any Mars mission with major Russian participation has succeeded. The failure rate for any Russian effort to go to Mars has been 100%. And it hasn’t been because the missions have been particularly difficult. The majority of their failures occurred in the 1960s and 1970s, even as they were very successfully completing much harder lander missions to Venus.

It has almost as if there is a curse against any Russian attempt to visit the Red Planet. Hopefully, that curse will finally be broken on Sunday.

The landing site for ExoMars’ Schiaparelli lander

This ESA press release provides a nice overview of the landing area that the Schiaparelli lander on ExoMars is targeting.

The landing ellipse, measuring 100 x 15 km, is located close to the equator, in the southern highlands of Mars. The region was chosen based on its relatively flat and smooth characteristics, as indicated in the topography map, in order to satisfy landing safety requirements for Schiaparelli. NASA’s Opportunity rover also landed within this ellipse near Endurance crater in Meridiani Planum, in 2004, and has been exploring the 22 km-wide Endeavour crater for the last five years. Endeavour lies just outside the south-eastern extent of Schiaparelli’s landing ellipse.

Since the primary missions of both Schiaparelli and the ExoMars orbiter, dubbed the Trace Gas Orbiter, is test the technology for getting to and landing on Mars (in preparation for the more challenging 2020 ExoMars mission), I suspect that they chose this very well studied and already visited area to make this test landing less risky.

Side note: ExoMars successfully completed its second and last planned mid-course correction yesterday in preparation for its October arrival at Mars.

Russia and Europe agree to delay next ExoMars mission

After looking at their schedules the Russians and Europeans have agreed that they cannot meet the schedule to launch the second ExoMars mission by the next launch window in 2018, and have agreed to delay the mission until 2020.

This really isn’t a surprise, since Russia was a late replacement of the U.S. when the Obama administration backed out of the project suddenly. They need time to prepare.

ISS astronaut to steer rover on Earth

On to Mars! The British have enlisted the skills of astronaut Tim Peake on ISS to do some test driving of a prototype rover planned for launch on the second ExoMars mission in 2018.

Major Peake will operate Bruno remotely from the International Space Station. His mission will be to drive the robot into a make-shift cave, which will replicate the conditions on Mars, where he will seek out targets marked with an “X”. “There are caves on Mars and craters that cast long shadows,” said Airbus Defence & Space communications director Jeremy Close. “To explore those areas, it’s more efficient to have a human in the loop.”

I must be a bit of a skeptical grump here: Looking at this story I found it packed with more public relations junk than you can imagine. The whole test facility shown is absurd. All show, no reality. Also, their claims about the rover’s route-finding superiority don’t sound right to me.

And the rover itself? This is the prototype of what they plan to launch in 2018? You have got to be kidding? We are less than two years from launch. While I grant this is probably only a model for testing the robot’s route-finding capability, using something held together by packing tape at this late date hardly fills me with confidence about the final product.

Hat tip John Batchelor for sending me the link.

Near disaster for ExoMars

The Russian jinx for going to Mars might not be over yet: New data suggests that the Briz-M upper stage to the Proton rocket exploded shortly after it has propelled ExoMars on its way to Mars and then separated from it.

There appears to be a cloud of debris near the probe, thought to have been caused when the Briz-M stage was to fire its rockets one last time to take it away from ExoMars as well as prevent it from following it to Mars. Instead, it is thought (though not confirmed) that the stage blew up at that moment.

Though so far ExoMars appears to be functioning properly, but they have not yet activated all of its most sensitive instruments. Only when they turn them on in April will we find out if they were damaged in any way by the Briz-M failure.

ExoMars blasts off

The European-Russian Mars orbiter/lander ExoMars was successfully launched on a Proton rocket this morning from Baikonur.

It will still take most of today for the rocket’s Briz-M upper stage to complete several additional engine burns to send the spacecraft on its path to Mars, but the most difficult part of the launch has now passed.

The article does a nice job of summing up Russia’s most recent track record in trying to send spacecraft to Mars, thus illustrating the significance of today’s success:

For Russian scientists, the launch marks the resumption of a cooperative effort with Europe to explore the Solar System, after the failure of the Phobos-Grunt mission in 2011.The launch of the ExoMars-2016 spacecraft will be Proton’s first “interplanetary” assignment in almost two decades. During its previous attempt in November 1996, Proton’s upper stage failed, sending the precious Mars-96 spacecraft to a fiery desmise in the Earth’s atmosphere and effectively stalling Russia’s planetary exploration program for a generation.

Further in the past, during the Soviet era, the Russians tried numerous times to either orbit or land on Mars. Every mission failed. If this mission successfully reaches Mars and lands it will mark the first time the Russians played a major role in a mission to Mars that actually reached its goal and worked.

ExoMars ready for launch

The European ExoMars Mars orbiter and lander mission, set for launch on March 14, is assembled on its Proton rocket and is ready for launch.

This European project was originally going to be in partnership with NASA, but the Obama administration pulled out of the deal. The Russians then offered to come in and provide a rocket for the mission.

Russian lunar mission delayed again

The Russian Luna-Glob has been delayed again, partly due to embargoes imposed by the Ukraine war, and partly due to a lack of money.

The article notes that Russia’s participation in the European ExoMars project has left little resources for this lunar mission, causing delays. It also notes the possibility that the second mission in ExoMars, scheduled for 2018, might be delayed as well. (The first ExoMars mission is scheduled to launch next year.)

All-in-all, this story indicates to me that the Russians continue to have serious underlying financial and management problems throughout their society. Having lost faith in capitalism, after 20 years of not really doing it right, they have returned to a soviet-style big government top-down approach. I doubt it will solve their problems.

1 2