Astronomers: If there are artificial Dyson spheres out there, we can detect them

In a preprint science paper published on October 26, 2021, astronomers review the impact a Dyson sphere might have on its central star and conclude that modern astronomical instruments should be able to identify these changes. From the abstract:

The search for signs of extraterrestrial technology, or technosignatures, includes the search for objects which collect starlight for some technological use, such as those composing a Dyson sphere. These searches typically account for a star’s light and some blackbody temperature for the surrounding structure. However, such a structure inevitably returns some light back to the surface of its star, either from direct reflection or thermal re-emission. In this work, we explore how this feedback may affect the structure and evolution of stars, and when such feedback may affect observations. We find that in general this returned light can cause stars to expand and cool. Our MESA models show that this energy is only transported toward a star’s core effectively by convection, so low mass stars are strongly affected, while higher mass stars with radiative exteriors are not. Ultimately, the effect only has significant observational consequences for spheres with very high temperatures (much higher than the often assumed ~300 K) and/or high specular reflectivity. Lastly, we produce color-magnitude diagrams of combined star-Dyson sphere systems for a wide array of possible configurations.

A plain-language description of the paper can be found here, which summarizes this work as follows:

This study shows that Dyson spheres can result in measurable changes to stellar properties. Megastructures have long been confined to science fiction, imagination and certain video games. However, if there are indeed Dyson spheres out there waiting to be found, we could soon be in a position to find them.

Breakthrough Listen adds southern hemisphere telescope to extraterrestrial listening campaign

Breakthrough Listen has added the MeerKAT telescope in South Africa to its extraterrestrial listening campaign, thereby expanding the campaign to cover almost the entire sky.

Breakthrough Listen’s MeerKAT survey will examine a million individual stars – 1,000 times the number of targets in any previous search – in the quietest part of the radio spectrum, monitoring for signs of extraterrestrial technology. With the addition of MeerKAT’s observations to its existing surveys, Listen will operate 24 hours a day, seven days a week, in parallel with other surveys. “Collaborating with MeerKAT will significantly enhance the capabilities of Breakthrough Listen”, said Yuri Milner, founder of the Breakthrough Initiatives. “This is now a truly global project.”

Built and operated by the South African Radio Astronomy Observatory (SARAO), and inaugurated in July 2018, MeerKAT is a powerful array of 64 radio antennas in the remote Karoo Desert of South Africa. By partnering with SARAO, Breakthrough Listen gains access to one of the world’s premier observing facilities at radio wavelengths. Signals from the 64 dishes (each 13.5 meters in diameter) are combined electronically to yield an impressive combination of sensitivity, resolution and field of view on the sky. MeerKAT also serves as a precursor for the Square Kilometre Array, which will expand and enhance the current facility in the coming decades, eventually spanning a million square meters across South Africa and Australia to create by far the world’s largest radio telescope.

They have also widened their approach. They are not simply looking for intelligent radio communications, they are looking for any signs of technology.

How to really look for aliens

Two scientists summarize the challenge for finding alien life in the universe.

Look for high amounts of oxygen and mid-infrared energy, the second of which has already produced some candidates.

A recent large survey by the Wide-field Infrared Survey Explorer (WISE) satellite did identify five red spiral galaxies whose combination of high MIR and low near-ultraviolet luminosities are inconsistent with simple expectations from high rates of star formation. A conventional explanation for these observations, such as the presence of large amounts of internal dust, has not been ruled out, however. Such peculiar objects deserve follow-up observations before we explore whether they might represent the signatures of galaxy-dominating species.

The article is very thoughtful, however, and outlines in detail the issues and problems the research faces. We might, in a few decades, have the capability to answer this question, but then, the aliens might be alien enough to still be undetectable. Or they might not exist at all.