Tag Archives: Hubble Constant

Universe’s expansion rate contradicts dark energy data

The uncertainty of science: New measurements of the universe’s expansion rate, dubbed the Hubble constant, contradict theoretical predictions based on previous data.

For their latest paper, Riess’s team studied two types of standard candles in 18 galaxies using hundreds of hours of observing time on the Hubble Space Telescope. “We’ve been going gangbusters with this,” says Riess.

Their paper, which has been submitted to a journal and posted on the arXiv online repository on 6 April, reports that they measured the constant with an uncertainty of 2.4%, down from a previous best result2 of 3.3%. They find the speed of expansion to be about 8% faster than that predicted based on Planck data, says Riess. [emphasis mine]

I highlight the number of galaxies used to get this data because I think these scientists, are being a bit over-confident about the uncertainty of their data. The universe has untold trillions of galaxies. To say they have narrowed their uncertainty down to only 2.4% based on 18 is the height of silliness.

But then, the lead scientist, Adam Riess, recognizes this, as he is also quoted in the article saying “I think that there is something in the standard cosmological model that we don’t understand.”

Using data from the Spitzer Space Telescope astronomers have narrowed the universe’s rate of expansion to about 74.3 kilometers per second per megaparsec.

The uncertainty of science: Using data from the Spitzer Space Telescope astronomers have narrowed the universe’s rate of expansion to about 74.3 kilometers per second per megaparsec.

The importance of this number, also called the Hubble Constant, is that it allows astronomers to extrapolate more precisely backward to when they believe the Big Bang occurred, about 13.7 billion years ago. It also is a crucial data point in their effort to understand dark energy, in which this expansion rate is actually accelerating on vast scales.

Back in 1995 a team led by Wendy Freedman, the same scientist leading the work above, announced that they had used the Hubble Space Telescope to determine the expansion rate as 80 kilometers per second per megaparsec. Then, the margin of error was plus or minus 17 kilometers. Now the margin of error has been narrowed to plus or minus 2.1 kilometers.

Do I believe these new numbers? No, not really. Science has nothing to do with belief. I do think this is good science, however, and that this new estimate of the Hubble constant is probably the best yet. I would also not be surprised if in the future new data eventually proves this estimate wrong.