Tag Archives: India

Mangalyaan passes three years in Mars orbit

India’s Mangalyaan orbiter has passed its third anniversary operating in Mars orbit.

The spacecraft could last as long as five more years before running out of fuel. Though it has five instruments and has taken more than 700 images, its importance so far is not in the science it has done but in what it has taught Indian engineers for running future more sophisticated missions.

Share

India hopes to resume launches before December

Despite an August 31 launch failure, India is still planning to resume launches before December.

On Friday, Mr Kiran Kumar [head of ISRO] was optimistic that the workhorse rocket would resume flights within a couple of months. “We have identified what the problem is, and we are going through simulations to make sure what we are concluding, is what has exactly happened (during the unsuccessful flight on August 31). The committee, which has been set up to go through the report is having detailed discussions and the report will come out very soon. After the committee gives its final report, we will resume the launches by November-December,” he said, on the sidelines of silver jubilee celebrations of Antrix Corporation Ltd, the corporate arm of ISRO.

They might not meet this goal, but that they are trying to resume launches in less than four months indicates that they are emulating the private sector and not most typical government agencies like NASA in this matter. Both NASA and ISRO have in the past sometimes taken years to recover from a launch failure. After SpaceX’s launchpad explosion in September 2016 they vowed to launch in less than four months, and managed to do it in five months. That ISRO is now trying to do the same indicates that the competition has forced them to up their game.

Share

India’s PSLV rocket fails to release satellite

India’s PSLV rocket failed to put a navigation satellite into orbit yesterday when the payload fairing did not separate.

The PSLV has had an excellent launch record, so this failure is unfortunate and a surprise. Whether it will effect that rocket’s next launch, putting two Google Lunar X-prize contestants into space, remains unknown.

We are about to leave Torry and head home. Further posts will be on the road, assuming I can get service.

Share

India to almost double launch rate with new rocket assembly building

Capitalism in space: India’s space agency ISRO is building a second rocket assembly facility at its Sriharikota spaceport so that it can prepare two rockets for launch simultaneously.

“We have not reached the limit of two launchpads. With the new assembly facility, we will be able to assemble more vehicles. Once we are able to assemble more rockets but not able to launch them even by reducing launch timings, then we will start work on the third launchpad. But for that, we first need (government’s) approval. So, we are gradually working to eliminate all bottlenecks to increase the frequency of launches.” With the new facility, Isro can achieve launch 12 rockets in a year from the seven at present.

The Times of India also recognizes the value of this upgrade. To quote the article, “With the increased frequency of foreign satellite launches, ISRO can rake in big moolah.”

I couldn’t have said it better myself.

Share

R.I.P. U.R. Rao

U.R. Rao, the man who led the design and construction of India’s first satellite in 1975, has passed away at 85.

After graduation from Madras University and post-graduation from Banaras Hindu University, Rao went to the US in the early 1960s to work in the faculty of MIT (Massachusetts Institute of Technology) at Cambridge in Maryland and as an Assistant Professor at University of Texas in Dallas.

On returning to India in 1966, Rao joined PRL in Ahmedabad as professor under the guidance of Vikram Sarabhai, architect of the Indian space science, and shifted to Bengaluru to work as a space scientist at ISRO’s satellite centre in 1972. “Under Rao’s guidance, the first Indian satellite ‘Aryabhata’ was built in 1975 to use space technology for the country’s socio-economic development. On its success, about 20 satellites were developed and launched for various space applications spanning communications, remote sensing and weather under his supervision,” an official said.

He subsequently became head of ISRO from 1984 to 1994, when they developed their first rocket, the ASLV, which became today’s PSLV, as well as began their development of the GSLV.

Share

ISRO’s 104 satellite launched earned India about $7 million

Capitalism in space: India’s space agency ISRO on Wednesday revealed to that country’s parliament that its record-setting 104 satellite launch on June 23 earned about $7 million.

On June 23 this year, PSLV-C38 had launched 712-kg Cartosat-2 satellite along with 30 co-passenger satellites. Of the 30 nano satellites, while one belonged to Noorul Islam University from Tamil Nadu, the rest 29 were from 14 foreign countries. On Wednesday, the government informed the Lok Sabha that the launch of 29 foreign satellites helped Antrix Corporation Ltd (ACL), the commercial and marketing arm of Isro, earn Rs 45 crore (6.1 million euros).

Before the June 23 multiple launch, Isro made the world record when its PSLV C37 launched 104 satellites in one go on February 15 this year. However, the space agency did not reveal how much it earned from that record-breaking launch. Out of the 104 satellites, 96 were from the US, three from India and one each from Israel, Kazakhstan, the Netherlands, Switzerland and the UAE.

From an American perspective it is encouraging that U.S. companies dominated the satellite count. From India’s perspective, the profits here are only going to encourage that nation to push for more rockets and cheaper costs.

The one problem I see with this is that it is the government that is obtaining the profits, not private Indian citizens or companies. Such an arrangement will not be good for India in the long run, as it encourages the government to use its coercive power to squelch private competitors.

Share

Has India cut its cubesat launch prices?

Capitalism in space: A complex analysis of India’s recent launch prices suggests that ISRO reduced its cubesat launch prices when it launched a record-setting 103 satellites on the most recent PSLV launch.

The key paragraph however is this:

Small-satellite owners have long complained that the PSLV, whose reliability has been established in the market, has been slow to increase its launch tempo at a time of surging cubesat production. For the moment, none of these satellite customers’ launch options provide predictable launch cadence at affordable prices.

That may be about to change as several dozen vehicles designed specifically to accommodate the growing cubesat market are preparing to enter operations. Not all are likely to succeed in establishing a foothold, but the sheer number of them is impressive:

That makes it all the more important for ISRO’s Antrix Corp., the agency’s commercial arm, to cement a reputation for launch regularity and low prices.

In other words, because a flock of new smallsat launch companies, such as Rocket Lab, Vector, and Virgin Orbit, are about to enter the market ISRO is suddenly feeling the pressure, which is why they have cut prices as well as started to up their launch rate.

Isn’t competition wonderful?

Share

Israel and India sign three new space agreements

The new colonial movement: India and Israel have inked three new development agreements between their different government space agencies.

Prime Minister Narendra Modi’s historic visit to Israel has deepened cooperation in space technology between the two countries as the two sides on Wednesday signed three agreements relating to space. The first memorandum of understanding was between Indian Space Research Organisation (Isro) and Israel Space Agency for cooperation in electric propulsion for small satellites, second was on cooperation in GEO-LEO optical links and third pact was on cooperation in atomic clocks (which are satellite components meant to provide precise locational data).

The third agreement is especially interesting. It indicates that India no longer wants to work with the German company that built its most recent GPS satellites because that company’s atomic clocks all had problems. Unlike the ESA, India has decided that such failures should not be rewarded with more work.

Share

India’s PSLV rocket successfully launches 31 satellites

India today completed its fourth launch of 2017, using its PSLV rocket to successfully place 31 satellites in orbit, including 30 smallsats.

They also did in-orbit engine tests of the rocket’s fourth stage after releasing the satellites.

For 2017 India has at this moment completed as many launches as ULA, and only one less than Russia. They have four more launches tentatively scheduled, though it is likely that not all will fly this year. If they get them off, however, they will definitely move into the upper tier of launch nations.

Share

What ISRO charges for a launch

Capitalism in space: This article, outlining the overall expenditures and earnings of India’s space agency, ISRO included this tidbit about the price it charges for launches:

Several companies like SpaceX’s Falcon 9, Russia’s Proton ULA, and Arianespace are big names in the space but ISRO’s Antrix provides competitive rates for commercial launches. ISRO, that has now become a specialist in launching satellites, cost a third of SpaceX launches. The low rates are probably because of ISRO’s location while its Indian engineers earn a fraction of the salaries that engineers would command in foreign countries. [emphasis mine]

If India does charge in the range of $20 to $30 million per launch they are in a strong position to compete with SpaceX, even after it reduces its prices because of the use of used first stages.

Share

India successfully launches its first GSLV Mark 3 rocket

India today successfully launched its most powerful rocket, the GSLV Mark 3, for the first time.

The first orbital launch of India’s Geosynchronous Satellite Launch Vehicle Mark III (GSLV Mk.III) marked a milestone in India’s space program, with the more powerful rocket allowing the Indian Space Research Organisation (ISRO) to begin launching heavier payloads aboard its own vehicles – both for spaceflight applications such as communications and in support of the country’s nascent manned space program.

Monday’s launch came two and a half years after the GSLV Mark III’s maiden flight, a successful suborbital test for which only the rocket’s lower stages were live. The test flight, conducted on 18 December 2014, carried a prototype crew capsule and also served to validate the rocket’s design and demonstrate the stage performance and operation of the rocket’s solid-fuel first stage and liquid-fuelled second stage.

This is India’s third launch this year, which amazingly ties them at this moment with Russia. This will change, as Russia hopes to resume Proton launches this week, but the fact both speaks well of India’s growing success in space and Russia’s continuing problems.

Share

India’s GSLV rocket successfully launches communications satellite

India’s successfully launched a communications satellite early today using its Mark II GSLV rocket.

Friday’s launch, designated GSLV F09, was the fifth flight of the Mark II GSLV which debuted in April 2010. This replaced the Mark I, which first flew in 2001 and made its final flight at the end of 2010, introducing an Indian-developed third stage engine instead of a Russian-built engine flown on the Mark I. With this new cryogenic propulsion system, the GSLV Mk.II is a fully indigenous vehicle.

The GSLV’s service has been marred by concerns over its reliability – to date only half of its flights have been successful – however last September’s launch of INSAT-3DR saw it achieve three consecutive successes for the first time.

This launch success significantly strengthens ISRO’s ability to sell its launch services worldwide. They now have three different rocket configurations, all entirely home built, and all with a string of launch successes.

Share

ISRO requests Indian proposals for Venus probe

India’s space agency ISRO has issued a request for proposals from Indian scientists for the scientific instruments to be installed on a future probe to Venus.

The announcement included the following information about the proposed Venus orbiter itself:

The payload capability of the proposed satellite is likely to be 175 kg with 500W of power. However these values are to be tuned based on the final configuration. The proposed orbit is expected to be around 500 x 60,000 km around Venus. This orbit is likely to be reduced gradually, over several months to a lower apoapsis.

All told it appears that India is moving forward with this project, and probably intends to build it much like they build Mangalyaan, their successful Mars orbiter, quickly, efficiently, and for relatively low cost.

Share

India’s government a barrier to private space

Even as India and its space agency show themselves to increasingly be a major player in the worldwide aerospace market, it appears that India’s governmental policy on private satellite communications is acting as a barrier that blocks the growth of a commercial space industry.

India’s current satcom policy, first rolled out in 1997 and then updated in 2000, is clearly outdated. A senior ISRO official who attended the ORF event (but declined to be identified) pointed out that all the existing satcom policy says is Indian satellite companies will be given preference over foreign multinational companies. “How does this preference play out? If the department of space is worried about national security concerns, they should lay down clear guidelines for security compliance by foreign satellites. The existing policy doesn’t talk about this, which inevitably leaves it to ISRO, DoS and Antrix’s discretion,” the official told The Wire.

And this discretion has held up multiple applications for satellite manufacturing and foreign direct investment over the last decade. Hughes’ Krishna is particularly frustrated over this. “If a company submits an application for satellite broadband services in India, irrespective of where the satellites will be made, it needs a specific timeline on when it will hear back from ISRO or the DoS. Will it be two years, three years or five years? It is difficult to line up future investments if speedy clearance is not given,” Krishna said.

Essentially, India’s Department of Space (DoS) and its space agency ISRO control all licensing, and have been using that power to delay or deny the issuing of any private satellite licenses, since such efforts are in competition with these government agencies.

The situation here is very similar to what existed in the U.S. with NASA for most of the last half of the 20th century. The agency did not want private launch companies competing with its own manned programs, and diligently worked to block their efforts. If you wanted to be part of manned space, you did what NASA told you to do and you built what they told you to build. It wasn’t until the rise of the commercial space programs to launch cargo to ISS that NASA’s grip on manned space was finally broken.

India now faces the same problem. ISRO has done an excellent job, as NASA did in its early years, in getting India’s space industry started. It now needs to back off, stop running things and simply be a customer of these competing private companies, letting freedom do the job instead of government dictate. The question now is whether the Indian government will allow this to happen. There are many vested interests there that will resist.

Share

India’s space agency wants to build a space station

The decline begins: The head of India’s space agency ISRO yesterday advocated that his country build its own space station.

The spacesuit is ready. A survival capsule is on the way. ISRO has everything to send astronauts into space and develop a space station, all that’s left is for the government to give the money and policy clearance, said ISRO chief AS Kiran Kumar here on Monday. “We have the capability to create a space station, but you (government) have to give us the money and time to make this happen,” Kumar told reporters on the sidelines of 34th foundation day celebration of the Raja Ramanna Centre for Advanced Technology (RRCAT). “If the government and country decides… we are ready. You need to provide us funding, policy clearance,” he said, adding that space mission is low priority for the government “because one doesn’t see any immediate use of this in country’s development and growth”.

Kumar’s comments came in the backdrop of Chinese media reacting to ISRO’s recent record launch of 104 satellites at one go. An editorial in a Chinese newspaper pointed out that “there is no Indian astronaut in space and the country’s plan to establish a space station has not started”. [emphasis mine]

Rather than focus on development that could increase India’s competitiveness in the profitable launch market, such as improving its rockets either by making them reusable or able to launch more frequently, Kumar instead wants to spend his government’s money and build a space station. He doesn’t really outline what he intends to accomplish with this station, other than demonstrate that India can match China. His focus instead is creating an infrastructure for pork and jobs for ISRO. The station will not bring in profits, which would be more useful to the country and its nascent private space industry.

This is what government agencies routinely do. They might start out functioning like an innovative private company trying to attract customers, but the lure of coerced government money always takes precedence in the end, and the agency shifts its focus to building pork-laden empires funded by tax dollars.

Share

India preparing rover for 2018 Moon landing

The competition heats up: India preparing rover for 2018 Moon landing.

Isro’s Satellite Applications Centre Director, M. Annadurai, revealed the tentative launch schedule while speaking to the press at the Satish Dhawan Space Centre, Shar, Sriharikota on Wednesday. He said a Lander and a six-wheeled Rover were being prepped to go with the Chandrayaan-II mission. The chief scientist added that a launch is likely to take place in the first quarter of 2018. According to Dr P.V. Venkita Krishnan, the director of the Isro Propulsion Complex at Mahendragiri, engineers were currently testing soft-landing engines.

India’s launch of a record 104 satellites on a single rocket has pumped up the Indian press, as there were almost 20 stories on space and that launch in their press today, almost all favorable.

This article however is from the U.S., and takes a look at the ineffective American space policy that supposedly forbids American companies from launching on Indian rockets.

The U.S. Commercial Space Launch Agreement of 2005 prohibits the launch of commercial satellites on the Indian vehicle. The reasoning is that struggling U.S. commercial launch providers needed time to establish themselves in the market and would be wiped out by India’s PSLV, which is developed by the Indian Space Organization.

Since 2015, commercial satellite owners have successfully obtained waivers to the policy.

The article notes India’s competitive prices, as well as the overall state of the smallsat industry and its dependence on bigger rockets as secondary payloads to get into space. India’s rockets, funded and subsidized by the government but also built to be inexpensive so as to attract customers, is clearly positioned to effectively compete with SpaceX, who until now charged the least.

What will our Congress do? My preference would be for them to repeal this part of the 2005 law so that American satellite companies can fly on whoever they wish. That would increase competition but it would also likely invigorate the overall launch industry because it would increase the satellite customer base for those rockets and thus create more business for everyone.

Sadly, I suspect that Congress will instead demand that the waivers to the law cease, and will thus block the use if Indian satellites by American companies. The short-sightedness of our politicians never ceases to surprise me.

Share

India launches record 104 satellites at one go

The competition heats up: India today successfully used its PSLV rocket to launch a record 104 satellites.

I can’t quote the description of the 104 satellites as it is too long. The bottom line however is that India has demonstrated that it is now a major player in the space launch industry.

Share

Countdown begins on India’s record-setting launch of 104 satellites

The competition heats up: ISRO has begun the countdown for Wednesday’s launch of India’s PSLV rocket, carrying a record-setting 104 satellites.

he Polar Satellite Launch Vehicle would be carrying a 714 kilogram main satellite for earth observation and 103 smaller “nano satellites” which would weigh a combined 664 kilograms. Nearly all of the nano satellites are from other countries, including Israel, Kazakhstan, The Netherlands, Switzerland, United Arab Emirates and 96 from United States, said the state-run ISRO.

If successful, India will set a world record as the first country to launch the most satellites in one go, surpassing Russia which launched 39 satellites in a single mission in June 2014.

Obviously, all these different satellites got a cut-rate launch deal by sharing the launch, which helps make their launch affordable. The disadvantage here is that they do not have much flexibility in choosing their orbits, which is why there is also a market now for small rockets aimed at launching single smallsats, such as Rocket Lab’s Electron.

Share

An orbital change extends the life of India’s Mars orbiter

An orbital maneuver has allowed India’s Mars Orbiter Mission avoid an eight hour period with no sunlight — thus draining its batteries — so that the mission can be extended until 2020.

The on-board battery which was to take over had a life of just about 1.4 hours, while the eclipse was to last for 8 hours. The spacecraft’s future was bleak.

The scientists thought of a solution. On the night of January 17, a team of eight engineers at Indian Space Research Organisation’s Telemetry, Tracking and Command Network, Bengaluru, sent a time-delayed command to the Mars probe. The command set in motion firing of eight on-board thruster rockets. Each of them were fired for 431 seconds, pushing the Mars Orbiter Mission (MOM) space probe to a new orbit that completely avoids an eclipse up to September 2017. The shadowing in September is of a smaller duration, which the satellite’s batteries can handle. “Because of the crucial orbital change, the MOM now gets three additional years’ life. We are expecting it to transmit data till 2020,” Isro chairman A S Kiran Kumar told DH.

The mission’s science data is not as important as the experience it is giving Indian engineers in operating a planetary probe remotely from Earth. This success speaks well for the future of India’s space effort.

Share

India to launch spare GPS satellite because of single satellite failure

Because of the failure of the atomic clocks on one of its GPS satellites have failed, India now plans to launch one of their spare satellites to increase the system’s redundancy.

The article does not say whether they will make any changes to the clocks on the spare satellite, which are the same as the failed clocks on the Indian satellite and were all built by the same European company that built the clocks on Europe’s Galileo GPS satellites that are also failing.

Share

Clock problems on one of India’s GPS satellites

One of India’s seven GPS satellites is presently out of commission because its on-board atomic clock has malfunctioned.

The remaining satellites in the constellation is still functioning however, and are sufficient. The nature of this failure, so similar to the clock failures that have hit a number of Europe’s Galileo GPS satellites, makes me wonder if there is a connection.

Share

India delays next launch of its largest rocket

India has delayed the next launch of its GSLV rocket from January to no earlier than March in order to conduct tests on the rocket.

This does not change the schedule for the next launch of their smaller PSLV rocket, which is still set for February and will launch a record of over a hundred satellites, most of which are smallsats.

Posted from Tucson Internationa Airport. I am heading to St. Louis today to give a lecture to the local chapter there of the AIAA.

Share

Pakistan test fires a submarine-launched cruise missile

Does this make you feel safer? Pakistan last week successfully tested a submarine-launched cruise missile with a range of 300 miles and capable of carrying nuclear warheads.

The article provides a lot of detail not only on Pakistan’s capabilities but of India’s as well.

Although still a far cry from India’s 6,000 ton displacement Arihant class nuclear ballistic missile submarines (one is service and three others planned) and the short-range K-15 or medium-range K-4 ballistic missiles they carry, Pakistan’s nuclear armed Agosta class boats at least get the country in the second strike game, but in a very minimal way.

The Indian Navy’s anti-submarine capability is credible, and their submarine fleet includes multiple diesel-electric submarines of different origin, as wells a Russian Akula II class nuclear fast attack boat. So keeping an eye on Pakistan’s tiny Agosta 90B fleet will be possible, although it is not clear what level of confidence the Indian Navy has that they can always keep the boats in their own submarines’ crosshairs. Not just that, but even attempting to do so will tie up valuable assets that could better be assigned to deterring other regional nuclear powers, like China.

Share

India considers going to Jupiter and Venus

The competition heats up: India’s space agency ISRO is considering unmanned missions to both Jupiter and Venus, while also delaying their first manned test flight four years until 2024.

More significant, the second link had this quote:

Mr Somnath said during the current fiscal, Isro planned eight PSLV flights, up from six in 2016. “Our aim is to steadily increase the launches between 12 and 20 in phases with creation of necessary infrastructure.

Like everyone else, they are getting enough business to up their launch rate. 2017 is going to be an active year in the launch market.

Share

Fifth Google Lunar X-Prize team gets launch deal

Japan’s Team Hakuto has signed a deal to partner with another Google Lunar X-Prize competitor, Team Indus, to share the cost and launch together on a Indian PSLV rocket.

Essentially, both competitors will launch together. They will then race to the Moon to see which can first achieve the X-Prize goal of landing and roving 500 meters.

Share

India hires private companies to build satellite

The competition heats up: For the first time India’s space agency ISRO has signed a deal with a private consortium of private companies to have them build satellites.

The contract signed on Friday includes assembly, integration and testing (AIT) of two spare navigation satellites consecutively in around 18 months. It was signed between M. Annadurai, Director of ISRO Satellite Centre (ISAC), and the consortium lead, Alpha Design Technologies P Ltd. ISAC assembles the country’s satellites for communication, remote sensing and navigation.

From the third year, Indian industry could expect competitive bids for a new lot of spacecraft of 300-500-kg class, perhaps five a year, for both ISRO and for export, Col. H.S. Shankar (retd), CMD of Alpha Design, told The Hindu. This is the first time that ISRO has outsourced an entire satellite to industry, said Col. Shankar .

The Modi government appears to be trying here to emulate NASA in putting private companies in charge of construction, rather than having things designed and built in-house by ISRO. This is a very good sign. If they do it now, in the early days of their space effort, they can reduce ISRO’s ability to grow into a large bureaucracy with its own vested interests.

Share

Design flaw in India’s Mars Orbiter

According to American researchers, a fundamental design flaw in the primary scientific instrument on India’s Mangalyaan Mars orbiter prevents it from carrying out its mission of measuring the methane in the Martian atmosphere.

“They did not design this properly for the detection of methane on Mars,” Michael Mumma, senior scientist at NASA’s Goddard Space Flight Center, told Seeker. In 2003, Mumma led a team that made the first definitive measurements of methane on Mars using an infrared telescope in Hawaii. The methane, which appeared in plumes over specific regions of Mars, reached a maximum density of about 60 parts per billion. “The (MOM) instrument is beautifully engineered, but not for the methane task. It has other value, but unfortunately they will not be able to provide measurements of methane at the levels needed to sample even the plumes we saw,” Mumma said.

They are re-purposing the instrument to measure the reflected sunlight coming off the Martian surface, useful data to be sure but hardly worth an entire space mission.

Share

ISRO begins ground tests of its first lunar lander

The competition heats up: ISRO, India’s space agency, has begun testing the sensors its first lunar lander, Chandrayaan-2, will use to descend safely to the surface.

ISRO Satellite Centre or ISAC, which is the lead centre for the country’s second moon mission, has artificially created eight to ten craters to make the terrain resemble the lunar surface. This terrain is now the test bed for the lunar Lander’s sensors. Between Friday and Monday, a small ISRO-owned aircraft carrying equipment with the sensors flew a few times over these craters to see how well they performed.

Share
1 2 3 6