Tag Archives: lava tubes

A lava tube entrance near the Moon’s north pole?

Philolaus Crater near lunar north pole

In reviewing Lunar Reconnaissance Orbiter data scientists think they have discovered several skylight entrances into a lava tube that is located near the Moon’s north pole.

The new pits were identified on the northeastern floor of Philolaus Crater, a large, 43 mile (70 km)-diameter impact crater located at 72.1oN, 32.4oW, about 340 miles (550 km) from the North Pole of the Moon, on the lunar near side. The pits appear as small rimless depressions, typically 50 to 100 feet across (15 to 30 meters), with completely shadowed interiors. The pits are located along sections of winding channels, known on the Moon as “sinuous rilles,” that crisscross the floor of Philolaus Crater. Lunar sinuous rilles are generally thought to be collapsed, or partially collapsed, lava tubes, underground tunnels that were once streams of flowing lava.

“The highest resolution images available for Philolaus Crater do not allow the pits to be identified as lava tube skylights with 100 percent certainty, but we are looking at good candidates considering simultaneously their size, shape, lighting conditions and geologic setting” says Pascal Lee, planetary scientist at the SETI Institute and the Mars Institute who made the new finding at NASA’s Ames Research Center in Silicon Valley.

…Prior to this discovery, over 200 pits had been found on the Moon by other researchers, with many identified as likely skylights leading to underground lava tubes associated with similar sinuous rilles. However, today’s announcement represents the first published report of possible lava tube skylights in the Moon’s polar regions.

The floor of the crater as a lot of rilles, and a close look at that crater floor reveals to me a lot of possible sky light entrances, more than indicated by the images at the llink. (Go here, click on projections and pick “Orthographic (North Pole).” Then zoom in on the crater indicated by the yellow X in my image on the right above.)

The key here is that caves or lava tubes provide a good place to cheaply and quickly establish a lunar colony. While it is suspected that water might survive in permanently shadowed regions near the poles, up until now no one had found any good underground locations there. If this suspected skylight entrances prove true, this crater then becomes prime real estate on the Moon.


Thirty mile cave on the Moon?

A new analysis of data from Japan’s Kaguya lunar orbiter suggests that one of the cave pits it found could be an entrance to a lava tube 30 miles long.

In 2009, the Kaguya probe found a large shaft with an opening about 50 meters in diameter in the Marius Hills area. The shaft descends about 50 meters beneath the surface.

The JAXA team analyzed data obtained from a lunar radar sounder on the probe that indicated an underground structure extended west from the shaft. The study confirmed that the cavern, likely created by volcanic activity, has not collapsed, and there is the possibility of ice or water existing in rocks within the cave, the team said.

Do a search on Behind the Black using the search terms “cave” and “moon” and you will see many images of this pit, taken by Lunar Reconnaissance Orbiter as a follow-up to the Kaguya mission.


Lunar lava tubes could be big

New research now suggests that the lava tubes on the Moon have the potential to be very large, much larger than found on Earth.

On Earth, such structures max out at around 30 meters across, but the gravitational data suggest that the moon’s tubes are vastly wider. Assessing the sturdiness of lava tubes under lunar gravity, planetary geophysicist Dave Blair of Purdue University in West Lafayette, Ind., and colleagues estimate that the caves could remain structurally sound up to 5 kilometers across. That’s wide enough to fit the Golden Gate Bridge, Brooklyn Bridge and London Bridge end to end.

This isn’t really news, merely a confirmation of what other scientists have been theorizing for decades. What it tells us again is that the first permanent and successful lunar colonies will almost certainly be located in such tubes, since they provide ready-made radiation shielding as well as protection from the wild swings of temperature seen on the lunar surface. In the lava tube, the temperature will likely remain quite stable, making environmental control a much simpler problem.


Giant lava tubes possible on the Moon

New analysis of the lunar geology combined with gravity data from GRAIL now suggests that the Moon could harbor lava tubes several miles wide.

David Blair, a graduate student in Purdue’s Department of Earth, Atmospheric and Planetary Sciences, led the study that examined whether empty lava tubes more than 1 kilometer wide could remain structurally stable on the moon. “We found that if lunar lava tubes existed with a strong arched shape like those on Earth, they would be stable at sizes up to 5,000 meters, or several miles wide, on the moon,” Blair said. “This wouldn’t be possible on Earth, but gravity is much lower on the moon and lunar rock doesn’t have to withstand the same weathering and erosion. In theory, huge lava tubes – big enough to easily house a city – could be structurally sound on the moon.”

You can read their paper here. If this is so, then the possibility of huge colonies on the Moon increases significantly, as it will be much easier to build these colonies inside these giant lava tubes.


Scientists have found microbes inside a lava tube that can thrive in the freezing cold and low oxygen environment of Mars.

Scientists have found microbes inside a lava tube that can thrive in the freezing cold and low oxygen environment of Mars.

In a laboratory setting at room temperature and with normal oxygen levels, the scientists demonstrated that the microbes can consume organic material (sugar). But when the researchers removed the organic material, reduced the temperature to near-freezing, and lowered the oxygen levels, the microbes began to use the iron within olivine – a common silicate material found in volcanic rocks on Earth and on Mars – as its energy source.