MarCO interplanetary cubesats likely dead

More than two months after they provided relay communications for the landing of InSight on Mars, and more than a month since any contact has been heard from them, engineers now consider the two MarCO cubesats to likely be dead.

Now well past Mars, the daring twins seem to have reached their limit. It’s been over a month since engineers have heard from MarCO, which followed NASA’s InSight to the Red Planet. At this time, the mission team considers it unlikely they’ll be heard from again.

MarCO, short for Mars Cube One, was the first interplanetary mission to use a class of mini-spacecraft called CubeSats. The MarCOs – nicknamed EVE and WALL-E, after characters from a Pixar film – served as communications relays during InSight’s landing, beaming back data at each stage of its descent to the Martian surface in near-real time, along with InSight’s first image. WALL-E sent back stunning images of Mars as well, while EVE performed some simple radio science.

All of this was achieved with experimental technology that cost a fraction of what most space missions do: $18.5 million provided by NASA’s Jet Propulsion Laboratory in Pasadena, California, which built the CubeSats.

WALL-E was last heard from on Dec. 29; EVE, on Jan. 4. Based on trajectory calculations, WALL-E is currently more than 1 million miles (1.6 million kilometers) past Mars; EVE is farther, almost 2 million miles (3.2 million kilometers) past Mars.

Their loss of contact more than a month after the November landing of InSight actually shows their incredible success. Both MarCO cubesats functions well past Mars, demonstrating that these tiny satellites can do much of the same things bigger satellites costing billions do.

The MarCo cubesat success

Mars as seen by MarCo-B

The two MarCO cubesats that successfully relayed data from InSight to Earth during its landing yesterday continue to function, with one even sending back images. The photo on the right, cropped and reduced slightly to post here, was taken by MarCo-B.

Neither of the MarCO CubeSats carry science instruments, but that didn’t stop the team from testing whether future CubeSats could perform useful science at Mars. As MarCO-A flew by, it conducted some impromptu radio science, transmitting signals through the edge of Mars’ atmosphere. Interference from the Martian atmosphere changes the signal when received on Earth, allowing scientists to determine how much atmosphere is present and, to some degree, what it’s made of.

“CubeSats have incredible potential to carry cameras and science instruments out to deep space,” said John Baker, JPL’s program manager for small spacecraft. “They’ll never replace the more capable spacecraft NASA is best known for developing. But they’re low-cost ride-alongs that can allow us to explore in new ways.”

As a bonus, some consumer-grade cameras aboard MarCO provided “drive-by” images as the CubeSats sailed past Mars. MarCO-B was programmed to turn so that it could image the planet in a sequence of shots as it approached Mars (before launch, MarCO-A’s cameras were found to be either non-functioning or too blurry to use).

This engineering test proves that we don’t need to build billion dollar spacecraft every time we wish to send an unmanned scouting ship to another world. Cubesats will soon do the job quite well, and for a tenth the cost.

And there will be a lot of money to be made. Governments and private entities of all types will be eager to buy the services of the garage-built planetary cubesats that private companies are going to soon be building, in large numbers.

InSight has successfully landed

NASA engineers have received confirmation that InSight has successfully touched down on the Martian surface.

Don’t count your chickens yet. They need to wait about five hours for the dust, kicked up by landing, to settle before they try opening the solar panels. That must succeed, or the mission will fail, having no source of power.

The landing information was relayed through the two MARCO cubesats flying past Mars, a landmark engineering achievement that in a sense is more significant than the landing itself. These cubesats have demonstrated that smallsats can do complex interplanetary tasks. Expect a revolution in the planetary space exploration world.

First interplanetary image from a cubesat

One of the two MarCO cubesats launched with the InSight Mars lander has successfully taken its first picture of Mars, the first such image ever taken by an interplanetary cubesat.

The image itself is not that interesting, with Mars not much more than a dot. What makes this significant is that it proves that a small, inexpensive cubesat can be built with the capability to accurately point and take photographs during an interplanetary mission. This means that the entire field of interplanetary probes is prime for major changes, shifting from big expensive and rarely launched spacecraft to small inexpensive cubesats launching frequently and it large numbers.

Cubesats heading to Mars complete first course correction

The two cubesats, MarCO-A and MarCO-B, that were launched with NASA’s InSight Mars lander, have both completed their first course corrections, the first ever done in interplanetary space by cubesats.

While MarCO-A corrected its course to Mars relatively smoothly, MarCO-B faced some unexpected challenges. Its maneuver was smaller due to a leaky thruster valve that engineers have been monitoring for the past several weeks. The leak creates small trajectory changes on its own. Engineers have factored in these nudges so that MarCO-B can still perform a trajectory correction maneuver. It will take several more weeks of tracking to refine these nudges so that MarCO-B can follow InSight on its cruise through space.

“We’re cautiously optimistic that MarCO-B can follow MarCO-A,” said Joel Krajewski of JPL, MarCO’s project manager. “But we wanted to take more time to understand the underlying issues before attempting the next course-correction maneuver.”

Once the MarCO team has analyzed data, they’ll know the size of follow-on maneuvers. Several more course corrections will be needed to reach the Red Planet.

Since these two cubesats are an engineering test, even MarCo-B’s fuel leak issue provides valuable information that will make future interplanetary missions more likely and viable.

Mars cubesats take picture of Earth and Moon

One of the two MarCO cubesats heading to Mars on the first interplanetary cubesat mission, has taken its a picture of the Earth and the Moon.

NASA set a new distance record for CubeSats on May 8 when a pair of CubeSats called Mars Cube One (MarCO) reached 621,371 miles (1 million kilometers) from Earth. One of the CubeSats, called MarCO-B (and affectionately known as “Wall-E” to the MarCO team) used a fisheye camera to snap its first photo on May 9. That photo is part of the process used by the engineering team to confirm the spacecraft’s high-gain antenna has properly unfolded.

As a bonus, it captured Earth and its moon as tiny specks floating in space.

In a few weeks the two cubesats will make a mid-course correction, also the first time a cubesat has attempted such a thing.

NASA to launch first interplanetary cubesats

The competition heats up: When it launches its next Mars mission, a stationary lander, NASA will piggyback two cubesats, designed to fly past Mars and relay communications during the landing.

As I’ve noted earlier, standardized small cubesats are the future of unmanned satellite operations. Expect them to increasingly replace all types of larger satellites. And because they are small and cheap (both to make and launch), expect them to lead to a burst of new capitalistic activity in space.

Update: In related news, a small private company has delivered to NASA the first thrusters designed for cubesats. Up until now, cubesats have not been maneuverable. These thrusters will change that.