Tag Archives: microgravity

Liver damage from weightlessness?

The uncertainty of science: Mice flown for almost two weeks on the last space shuttle mission in 2011 have shown evidence of the early symptoms of liver disease.

The mice spent time orbiting the Earth on the final space shuttle flight in 2011. Once they returned home, teams of scientists were allowed to share and study their internal organs.

Jonscher’s team found that spaceflight resulted in increased fat storage in the liver, comparing pair-fed mice on Earth to those on the shuttle. This was accompanied by a loss of retinol, an animal form of Vitamin A, and changes to levels of genes responsible for breaking down fats. As a result, mice showed signs of nonalcoholic fatty liver disease (NAFLD) and potential early indicators for the beginnings of fibrosis, which can be one of the more progressive consequences of NAFLD. “It generally takes a long time, months to years, to induce fibrosis in mice, even when eating an unhealthy diet,” Jonscher said. “If a mouse is showing nascent signs of fibrosis without a change in diet after 13 ½ days, what is happening to the humans?”

This result doesn’t prove that weightlessness causes liver damage. It only suggests that more research is needed, though the data from six month to year long missions suggest that the liver harm to humans is either non-existent or temporary.

Injected stem cells cure osteoporosis in mice

Scientists have discovered that an injection of stem cells into mice with osteoporosis was able to completely cure them of the bone disease.

Researchers at the University of Toronto and The Ottawa Hospital had previously found a causal effect between mice developing age-related osteoporosis and a deficiency in mesenchymal stem cells (MSCs). One of the promising attributes of MSCs is that, while they can grow into different cells in the body just like other stem cells, they can be transplanted without the need for a match. “We reasoned that if defective MSCs are responsible for osteoporosis, transplantation of healthy MSCs should be able to prevent or treat osteoporosis,” says William Stanford, senior scientist at The Ottawa Hospital and Professor at the University of Ottawa.

To put this reasoning to the test, the scientists injected MSCs into mice with the condition. Six months later, which is one quarter of the life span of the animal, they observed a healthy functional bone in place of the damaged one. “We had hoped for a general increase in bone health,” says John E. Davies, co-author of the study. “But the huge surprise was to find that the exquisite inner ‘coral-like’ architecture of the bone structure of the injected animals – which is severely compromised in osteoporosis – was restored to normal.”

The importance of this discovery for space travel is that it might eventually allow scientists to use it to somehow prevent the loss of bone density during weightlessness.

3D printed items made in space come back to Earth

NASA today released a video of engineers unpacking a box of 3D parts that had been printed on ISS and then returned to Earth for testing.

Some more details here.

The goal, Bean continued, is for NASA to develop a database of mechanical properties to see if there’s any difference in mechanical strength between identical items made in space and on Earth. During the interview last month, Bean said that while NASA didn’t yet have any hard data, there had been initial indications from videos made on the space station, that the plastics used in the 3D printing there had “adhered differently” than those in the terrestrial test. “The astronauts trying to get the parts off the plate,” Bean said, found that the plastic “seemed to be a little more stuck than on the ground.” He said that while it was too early to tell if that was actually true, his guess was that if so, “it may be due to a lack of convection in zero-gravity.”

Understanding the engineering issues of 3D printing in space will make it possible for crews to carry far less cargo on long interplanetary journeys. Instead, they would carry a much smaller amount of raw material, which they could use to manufacture items as needed, then recycled.

How scientists are using the Kelly twins during Scott Kelly’s year-long mission to ISS to learn how weightlessness effects the human body

Link here. Scott Kelly launches today to the station to begin the flight.

The article’s headline and initial focus on how the Kellys’ privacy rights might interfere with the research seems inappropriate. It is as if the author and Nature wanted to spin the story to force the Kellys to reveal private medical data they would prefer to keep private.

The real story the article tells is that an incredible wealth of knowledge about microgravity will be gained by this flight, because the Kellys are both participating. And depending on what is learned when their entire genomes are sequenced, we might also be able to study that fully as well.

A bacteria that causes urinary tract infections has been found to grow better in zero gravity than it does on Earth.

Shades of science fiction: A bacteria that causes urinary tract infections has been found to grow better in zero gravity than it does on Earth.

It was inevitable that such a bug would be found. The key here is to figure out how to keep it from getting up into space.