The spiraling magnetic field surrounding the Milky Way’s central supermassive black hole

The magnetic field lines surrounding Sagittarius A*
Click for original image.

Astronomers have now produced the first detailed image of polarized light surrounding the Milky Way’s central supermassive black hole, dubbed Sagittarius A* (pronounced “Sagittarius A-star”) which in turn maps out the spiraling field lines of that black hole’s magnetic field.

The image to the right, reduced to post here, shows that image. From the press release:

“What we’re seeing now is that there are strong, twisted, and organized magnetic fields near the black hole at the center of the Milky Way galaxy,” said Sara Issaoun, CfA NASA Hubble Fellowship Program Einstein Fellow, Smithsonian Astrophysical Observatory (SAO) astrophysicist, and co-lead of the project. “Along with Sgr A* having a strikingly similar polarization structure to that seen in the much larger and more powerful M87* black hole, we’ve learned that strong and ordered magnetic fields are critical to how black holes interact with the gas and matter around them.”

Light is an oscillating, or moving, electromagnetic wave that allows us to see objects. Sometimes, light oscillates in a preferred orientation, and we call it “polarized.” Although polarized light surrounds us, to human eyes it is indistinguishable from “normal” light. In the plasma around these black holes, particles whirling around magnetic field lines impart a polarization pattern perpendicular to the field. This allows astronomers to see in increasingly vivid detail what’s happening in black hole regions and map their magnetic field lines.

Despite this similarlity, it still remains a mystery why the much larger M87 black hole is very active while Sagittarius A’ remains generally quiet.

Astronomers: a 9,000-light-year-long stream of gas and dust ripples like a wave due to the Milky Way’s gravity

According to an analysis of data from the space telescope Gaia, astronomers now believe that a 9,000-light- year-long stream of gas and dust that is only 500 light years away from the Sun at its nearest point ripples up and down like a wave, due to the Milky Way’s gravity.

Dubbed the Radcliffe Wave after the institute in which the astronomers were based who first discovered it, the scientists determined its wavelike behavior by mapping the motions of the star clusters along its length. Apparently, over time they are moving up and down, not unlike fans at a stadium doing the wave.

The data also includes these intriguing results:

“It turns out that no significant dark matter is needed to explain the motion we observe,” Konietzka said. “The gravity of ordinary matter alone is enough to drive the waving of the Wave.”

In addition, the discovery of the oscillation raises new questions about the preponderance of these waves both across the Milky Way and other galaxies. Since the Radcliffe Wave appears to form the backbone of the nearest spiral arm in the Milky Way, the waving of the Wave could imply that spiral arms of galaxies oscillate in general, making galaxies even more dynamic than previously thought. “The question is, what caused the displacement giving rise to the waving we see?,” Goodman said. “And does it happen all over the galaxy? In all galaxies? Does it happen occasionally? Does it happen all the time?”

That no dark matter is involved causes a lot of problems for the hypothesis that such material exists, causing the motions of stars in the outer regions all galaxies to orbit the galaxy faster than they should. Why would dark matter cause that increased rotation, but have no impact on this wave? It is a paradox that is not easily resolved.

The dark matter in the Milky Way is not behaving as its supposed to

The uncertainty of science: Scientists using precise data of the motions of the outer stars of the Milky Way from the Gaia orbiting telescope have found they do not rotate the galaxy’s center as fast as expected, based on the theory of the existence of dark matter.

Dark matter was proposed to explain why in other galaxies the speed of rotation of outer stars does not appear to decline with distance (as seen for example with the planets in our solar system) but remains the same, no matter how far out you go. That extra speed suggests there must be unseen matter pulling on the stars.

[N]ew results that combine Gaia measurements with those from APOGEE (Apache Point Observatory Galactic Evolution Experiment), performed on a ground-based telescope in New Mexico, USA, and which measures the physical properties of stars to better judge their distance, have indeed measured the Milky Way’s rotation curve for stars out farther than ever before, to about 100,000 light years. “What we were really surprised to see was that this curve remained flat, flat, flat out to a certain distance, and then it started tanking,” says Lina Necib, who is an assistant professor of physics at MIT, said in a statement. “This means the outer stars are rotating a little slower than expected, which is a very surprising result.”

…The decline in orbital velocity at these distances implies that there is less dark matter in the center of our galaxy than expected. The research team describe the galaxy’s halo of dark matter as having been “cored,” somewhat like an apple. The crew also says there’s not enough gravity from what dark matter there seems to exist there, to reach all the way out to 100,000 light years and keep stars moving at the same velocity.

The rotation data of other galaxies, while somewhat robust, also includes a number of assumptions might be fooling us into thinking that the speeds are higher than expected. The more precise data gathered nearby, in the Milky Way, is now suggesting those assumptions and that distant data must be questioned.

Or to put it more bluntly, dark matter remains an ad hoc solution to a mystery that astronomers really don’t understand, or have sufficient data to explain. It might very well be a wild goose chase that has made them miss the real answer, whatever that might be.

The orbits of the nearest stars orbiting the Milky Way’s central black hole are impossible to predict

The uncertainty of science: Using a computer program developed in 2018 that can predict with accuracy the orbits of more than three interacting objects, scientists have found that the orbits of the 27 nearest stars orbiting the Milky Way’s central black hole, Sagittarius A* (pronounced A-star) are impossible to predict after only a very short time.

“Already after 462 years, we cannot predict the orbits with confidence. That is astonishingly short,” says astronomer Simon Portegies Zwart (Leiden University, the Netherlands). He compares it to our solar system, which is no longer predictable with confidence after 12 million years. “So, the vicinity of the black hole is 30,000 times more chaotic than ours, and we didn’t expect that at all. Of course, the solar system is about 20,000 times smaller, contains millions of times less mass, and has only eight relatively light objects instead of 27 massive ones, but, if you had asked me beforehand, that shouldn’t have mattered so much.”

According to the researchers, the chaos emerges each time in roughly the same way. There are always two or three stars that approach each other closely. This causes a mutual pushing and pulling among the stars. This in turn leads to slightly different stellar orbits. The black hole around which those stars orbit is then slightly pushed away, which in turn is felt by all the stars. In this way, a small interaction between two stars affects all 27 stars in the central cluster. [emphasis mine]

To my mind, the quote by the scientist above should be considered the most absurd statement by a scientist ever spoken, except that nowadays scientists make such idiotic statements all the time. To think that such different conditions wouldn’t produce different results suggests a hubris that is astonishing for a person supposedly trained in the scientific method.

Regardless, these results suggest that acquiring an understanding of the dynamics that created these stars is going to be very difficult, if not impossible. The conditions change so rapidly, and in an unpredictable manner, that any theory proposed will be simply guessing.

Astronomers chemically map a significant portion of the Milky Way

The chemistry of the Milky Way's nearby spiral arms
Red indicates areas with lots of heavier elements, blue indicates
areas dominated by hydrogen and helium. Click for original image.

Astronomers have now used today’s modern survey telescopes — on Earth and in space — to map the chemistry of a large portion of the Milky Way’s nearby spiral arms, revealing that the arms themselves are rich in heavier elements, indicating greater age and the right materials to produce new stars and solar systems like our own.

If the Milky Way’s spiral arms trigger star births as predicted, then they should be marked by young stars, aka metal-rich stars. Conversely, spaces between the arms should be marked by metal-poor stars.

To confirm this theory, as well as create his overall map of metalicity, Hawkins first looked at our solar system’s galactic backyard, which include stars about 32,000 light years from the sun. In cosmic terms, that represents our stellar neighborhood’s immediate vicinity.

Taking the resultant map, the researcher compared it to others of the same area of the Milky Way created by different techniques, finding that the positions of the spiral arms lined up. And, because he used metalicity to chart the spiral arms, hitherto unseen regions of the Milky Way’s spiral arms showed up in Hawkins’ map. “A big takeaway is that the spiral arms are indeed richer in metals,” Hawkins explained. “This illustrates the value of chemical cartography in identifying the Milky Way’s structure and formation. It has the potential to fully transform our view of the Galaxy.”

You can read the science paper here [pdf]. Based on this initial mapping effort, it appears that it will not be long before a large percentage of our own galaxy will be mapped in this manner.

What kind of barred spiral galaxy is the Milky Way?

Three types of barred spiral galaxies
Click for original image.

The uncertainty of science: Though astronomers have long believed that the Milky Way galaxy is a barred spiral galaxy, defined as having a major straight arm coming out in two directions from its nucleus with other spiral arms surrounding it, determining the exact structure has been difficult because of our presence within the galaxy.

The image to the right, taken from a paper just published, shows three different types of barred spirals. On the left is one where the surrounding spiral arms hardly exist. In the center the central bar is surrounded by multiple arms. On the right is a barred spiral with just one major spiral arm.

Though it has been generally accepted that the Milky Way belongs in the center category, astronomers remain unsure about the actual spiral structure. Previous work had suggested the galaxy actually had four major arms, not two as seen by most barred spirals. As noted in the paper, “If that is the case, the [Milky Way] may be an atypical galaxy in the universe.”

The research from the new paper however now proposes that the Milky Way is actually not atypical, but instead more resembles the center image, with two main arms and multiple segmented arms beyond. From the abstract:

Using the precise locations of very young objects, for the first time, we propose that our galaxy has a multiple-arm morphology that consists of two-arm symmetry (the Perseus and Norma Arms) in the inner parts and that extends to the outer parts, where there are several long, irregular arms (the Centaurus, Sagittarius, Carina, Outer, and Local Arms).

The astronomers cheerfully admit that this conclusion is uncertain, and will need many further observations for confirmation.

Astronomers identify what they think are the Milky Way’s first stars

The concentration of ancient stars in the Milky Way's core region
The concentration of ancient stars in the Milky Way’s core region.
Click for originial image.

The uncertainty of science: Using data produced by the European space telescope Gaia, combined with computer analysis, astronomers think they have identified the Milky Way’s first stars, all located within 30,000 light years of the galaxy’s core region.

The researchers began by locating a sample of two million bright red giant stars with the right spectra, using computer neural network machine learning.

With that sample, it proved comparatively easy to identify the ancient heart of the Milky Way galaxy – a population of stars that Rix has dubbed the “poor old heart”, given their low metallicity, inferred old age, and central location. On a sky map, these stars appear to be concentrated around the galactic center. The distances conveniently supplied by Gaia (via the parallax method) allow for a 3D reconstruction that shows those stars confined within a comparatively small region around the center, approximately 30,000 light-years across

The stars in question neatly complement Xiang’s and Rix’s earlier study of the Milky Way’s teenage years: They have just the right metallicity to have brought forth the metal-poorest of those stars that, later on, formed the Milky Way’s thick disk. Since that earlier study provided a chronology for thick-disk formation, this makes the ancient heart of the Milky Way older than about 12.5 billion years.

While the uncertainties of this scientific result are huge, it still helps identify the beginnings of the Milky Way, its initial size, and the kind of stars that existed here at that time.

99.9% of all mass at center of Milky Way is found in central black hole

New measurements of the orbits of several stars circling the Milky Way’s central supermassive black hole, Sagittarius A* (pronounced A-star), have confirmed that 99.9% of all mass at the galaxy’s center is concentrated in that black hole.

Astronomers have measured more precisely than ever before the position and velocity of four stars in the immediate vicinity of the supermassive black hole that lurks at the center of the Milky Way, known as Sagittarius A* (Sgr A*) [1]. These stars — called S2, S29, S38, and S55 — were found to be moving in a way that shows that the mass in the center of the Milky Way is almost entirely due to the Sgr A* black hole, leaving very little room for anything else.

The measurements, which further refine the mass of Sagittarius A* as 4.3 million times the mass of the Sun, show that very little of this mass is found in the surrounding space as gas or dark matter. It is all in the black hole, which might also help explain why the Milky Way’s central black hole is so quiescent. It has very little gas or other stars to feed it and thus produce emissions.

New Chandra mosaic of galactic center reveals spider-web of magnetism

Magnetic field line at the galactic center
Click for full image.

Scientists today released a spectacular panorama of the center of the Milky Way using X-ray data from the Chandra X-ray Observatory and radio data from the MeerKAT radio telescope in South Africa. The panorama reveals a complex web of magnetic field lines emanating out from the supermassive black hole at the center, Sagittarius A* (pronounced A-star).

Below the fold are reduced versions of the full panorama, unlabeled on the left and labeled on the right. The image to the right, reduced to post here, shows just one single example of those magnetic field lines, dubbed G0.17-0.41 and about 20 light years long. This particular filament is the subject of a paper just published in connection with the release of this panorama. From the press release.

A new study of the X-ray and radio properties of this thread by Q. Daniel Wang of the University of Massachusetts at Amherst suggests these features are bound together by thin strips of magnetic fields. This is similar to what was observed in a previously studied thread. (Both threads are labeled with red rectangles in the [full labeled panorama]. The newly studied one in the lower left, G0.17-0.41, is much farther away from the plane of the Galaxy.) Such strips may have formed when magnetic fields aligned in different directions, collided, and became twisted around each other in a process called magnetic reconnection. This is similar to the phenomenon that drives energetic particles away from the Sun and is responsible for the space weather that sometimes affects Earth.

The image below is fascinating to study because of the wealth of detail it includes, not only of magnetic filaments but of other nearby gas clouds and Sagittarius A* itself.
» Read more

Astronomers roughly map out Andromeda’s history

The uncertainty of science: Astronomers have now roughly mapped out the history of the Andromeda galaxy, identifying two major events whereby it had absorbed nearby dwarf galaxies.

“It’s been known for 10 to 15 years that Andromeda has a vigorous history of accumulating and destroying its neighbours,” Mackey says. In fact, he says, “It seems to have a much more intense history of that than the Milky Way.”

…[New data] “tells us there were two main events that formed the halo of Andromeda,” Mackey says. “One occurred very long ago. The other must have happened relatively recently.”

Not that Andromeda couldn’t also have eaten innumerable smaller galaxies. ”We can’t trace them with galactic clusters, because they didn’t have any to begin with,” Mackey says.

Most of the news reports about this new research have been very overwrought (Andromeda is “violent” and is going to “eat us!”) and very unaware that the assimilation of nearby small galaxies by Andromeda is not really news. Astronomers have known for years that big galaxies like Andromeda and the Milky Way absorb the dwarf galaxies around them. All this story does is postulate a more detailed though very rough timeline.

The Milky Way is warped?

Warped Milky Way

Astronomers mapping the locations of one kind of variable star in the Milky Way have found that, based on that data, our galaxy appears to be warped.

To make the map, astronomers looked to its bright, pulsing stars called cepheids. These stars burn up to 10,000 times more brightly than the sun so they are visible from across the galaxy and through interstellar clouds of gas and dust. Crucially, cepheids are “standard candles”: Their light waxes and wanes at a rate that corresponds to their inherent brightness. Astronomers can combine their true brightness with their apparent brightness, measured from Earth, to calculate how far away they are. Using a 1.3-meter telescope at Las Campanas Observatory in Chile, astronomers monitored the steady pulses from more than 2400 stars and pinpointed their location on a 3D model of the galaxy.

…From above, the Milky Way can be seen as a spiral-shaped galaxy, but this spiral disk doesn’t sit flat on the galactic plane. The cepheid stars cluster along an S-shaped curve, showing that the Milky Way’s disk is more warped than previously thought.

The image above shows this warp, with the star indicating where the Sun is located. The green dots represent cepheid variable stars.

Top view of galaxy

This science is good, but there are uncertainties. For example, a top view of the galaxy, showing the location in yellow of all the cepheids mapped, is to the right. Notice the strong bias to one side of the galaxy, where the Sun is located. Their information for the rest of the galaxy is very spotty.

The available data might show this warp, but I think it is premature to assume it accurately maps the entire shape of the Milky Way.

A stellar interloper in the Milky Way?

The uncertainty of science: Astronomers have identified a star inside the Milky Way whose chemical compositions suggests it was formed and originally came from a nearby dwarf galaxy.

This is the first discovery of a star having such extreme abundance ratios among Milky Way stars. On the other hand, several examples of stars having similar abundance ratios are known in dwarf galaxies. This result suggests that this star has formed in a dwarf galaxy, and has accreted onto the Milky Way in the process of galaxy formation. The abundance ratios of this star provide the clearest signature of merger events of dwarf galaxies in stellar chemical abundances known to date.

Though presently unique, this star probably is not the only such interloper in the Milky Way. It is believed by astronomers that our galaxy has absorbed a number of dwarf galaxies as it formed and grew, so we should expect more such stars to be discovered with time.

At the same time, we also must exercise some skepticism. Our understanding of galaxy formation is very preliminary, and thus the astronomers might be assuming too much about the chemical composition of dwarf galaxies in coming to this conclusion.

Posted at Los Angeles Airport on my way to Cannon Beach, Oregon, for a short vacation with friends.

Is the pole of the Milky Way’s central black hole pointing directly at us?

The uncertainty of science: New data obtained using a constellation of Earth-based telescopes, working as a unit, strongly suggests that the pole of the Milky Way7s supermassive central black hole, dubbed Sagittarius A* (pronounced A-star), is pointing directly at us.

The high quality of the unscattered image has allowed the team to constrain theoretical models for the gas around Sgr A*. The bulk of the radio emission is coming from a mere 300 milllionth of a degree, and the source has a symmetrical morphology. “This may indicate that the radio emission is produced in a disk of infalling gas rather than by a radio jet,” explains Sara Issaoun, graduate student at the Radboud University Nijmegen in the Netherlands, who leads the work and has tested several computer models against the data. “However, that would make Sgr A* an exception compared to other radio emitting black holes. The alternative could be that the radio jet is pointing almost at us”.

The German astronomer Heino Falcke, Professor of Radio Astronomy at Radboud University and PhD supervisor of Issaoun, calls this statement very unusual, but he also no longer rules it out. Last year, Falcke would have considered this a contrived model, but recently the GRAVITY team came to a similar conclusion using ESO’s Very Large Telescope Interferometer of optical telescopes and an independent technique. “Maybe this is true after all”, concludes Falcke, “and we are looking at this beast from a very special vantage point.”

If this is true, it might explain why Sgr A* is generally observed to be one of the quietest central supermassive black holes known. Compared to many others, its flux of emissions is far less.

Looking at the south pole of the Milky Way

Link here. The link provides instructions for finding the spot in the sky that corresponds to the south pole of the galaxy, pointing in a perpendicular direction away from its center.

No star marks the position. It sits in the faint southern constellation of Sculptor, the sculptor’s studio, hence its identification is intellectual rather than sensorial.

This is the case of the dog that did not bark. The reason there is little to see there is that you will be looking down out of the plane of the galaxy, in a direction with the fewest stars to see. The view is therefore looking out of our galaxy, at intergalactic space, vast and empty.

Early Milky Way collision uncovered by Gaia

Data from the space telescope Gaia has revealed a Milky Way merger event that occurred about 10 billion years ago.

Using the first 22 months of observations, a team of astronomers led by Amina Helmi, University of Groningen, The Netherlands, looked at seven million stars – those for which the full 3D positions and velocities are available – and found that some 30,000 of them were part of an ‘odd collection’ moving through the Milky Way. The observed stars in particular are currently passing by our solar neighbourhood.

We are so deeply embedded in this collection that its stars surround us almost completely, and so can be seen across most of the sky.

Even though they are interspersed with other stars, the stars in the collection stood out in the Gaia data because they all move along elongated trajectories in the opposite direction to the majority of the Galaxy’s other hundred billion stars, including the Sun. They also stood out in the so-called Hertzprung-Russell diagram – which is used to compare the colour and brightness of stars – indicating that they belong to a clearly distinct stellar population.

The sheer number of odd-moving stars involved intrigued Amina and her colleagues, who suspected they might have something to do with the Milky Way’s formation history and set to work to understand their origins. In the past, Amina and her research group had used computer simulations to study what happens to stars when two large galaxies merge. When she compared those to the Gaia data, the simulated results matched the observations. “The collection of stars we found with Gaia has all the properties of what you would expect from the debris of a galactic merger,” says Amina, lead author of the paper published today in Nature.

At the time, the two galaxies were both probably about the same size, approximately equivalent to the Magellanic Clouds.

Must I mention that there is some uncertainty here? The data is good, and the conclusions seem quite reasonable. At the same time, the data is still somewhat thin. We need a lot more Gaia-type telescopes mapping out the motions and positions of all the stars of the Milky Way in far more detail before the uncertainties here will shrink.

More intergalactic stars discovered

Worlds without end: Using the data from Gaia’s second data release astronomers have identified twenty stars that are moving too fast to be permanent members of the Milky Way galaxy.

More significantly, most appeared to be approaching the galaxy, not flying away from it, suggesting they are visitors from other galaxies.

It is possible that these intergalactic interlopers come from the Large Magellanic Cloud, a relatively small galaxy orbiting the Milky Way, or they may originate from a galaxy even further afield. If that is the case, they carry the imprint of their site of origin, and studying them at much closer distances than their parent galaxy could provide unprecedented information on the nature of stars in another galaxy – similar in a way to studying Martian material brought to our planet by meteorites.

…An alternative explanation is that the newly identified sprinting stars could be native to our Galaxy’s halo, accelerated and pushed inwards through interactions with one of the dwarf galaxies that fell towards the Milky Way during its build-up history. Additional information about the age and composition of the stars could help the astronomers clarify their origin.

At least two more data releases shall come from Gaia, launched by Europe to precisely track the location and motions of a billion stars. So far, they have complete 3D velocity information for about seven million stars. After these additional data releases they expect to have complete 3D velocity information for 150 million stars, and should identify a lot more intergalactic stars at that time.

Galaxies collide!

Using data from then space telescope Gaia, astronomers have identified evidence that 8 to 10 billion years ago the Milky Way collided with a dwarf galaxy.

The astronomers propose that around 8 billion to 10 billion years ago, an unknown dwarf galaxy smashed into our own Milky Way. The dwarf did not survive the impact: It quickly fell apart, and the wreckage is now all around us.

“The collision ripped the dwarf to shreds, leaving its stars moving in very radial orbits” that are long and narrow like needles, said Vasily Belokurov of the University of Cambridge and the Center for Computational Astrophysics at the Flatiron Institute in New York City. The stars’ paths take them “very close to the center of our galaxy. This is a telltale sign that the dwarf galaxy came in on a really eccentric orbit and its fate was sealed.”

It is thought that this dwarf galaxy was quite large for a dwarf galaxy.

Astronomers find evidence for thousands of black holes near galaxy center

The uncertainty of science: Using data from the Chandra X-Ray Observatory, astronomers have found evidence suggesting that thousands of stellar-mass black holes might exist circling Sagittarius A* (pronounced A-star), the super-massive black hole at the center of the Milky Way.

Essentially, they found a dozen likely black hole candidates in what they think are X-ray binaries system. From this they extrapolate the number of potential stellar-massed black holes at the center of the galaxy. However,

While the authors strongly favor the black hole explanation, they cannot rule out the possibility that up to about half of the observed dozen sources are from a population of millisecond pulsars, i.e., very rapidly rotating neutron stars with strong magnetic fields.

In other words, this conclusion is very uncertain. Nonetheless, even if half of their candidates are not stellar-mass black holes, the results do suggest that there are a very large number of black holes circling Sagittarius A*. Using this information astronomers will be able to better refine their theories on the formation process for such super-massive black holes.

Fastest stars in Milky Way escaped from Large Magellanic Cloud?

Astronomers have proposed that the fastest stars in Milky Way actually escaped from the Large Magellanic Cloud (LMC), the largest nearby satellite dwarf galaxy.

The LMC is the largest and fastest of the dozens of dwarf galaxies in orbit around the Milky Way. It only has 10% of the mass of the Milky Way, and so the fastest runaways born in this dwarf galaxy can easily escape its gravity. The LMC flies around the Milky Way at 400 kilometres per second and, like a bullet fired from a moving train, the speed of these runaway stars is the velocity they were ejected at plus the velocity of the LMC. This is fast enough for them to be the hypervelocity stars. “These stars have just jumped from an express train – no wonder they’re fast,” said co-author Rob Izzard, a Rutherford fellow at the Institute of Astronomy. “This also explains their position in the sky, because the fastest runaways are ejected along the orbit of the LMC towards the constellations of Leo and Sextans.”

Their calculations predict how many hypervelocity stars should be detectable and where in the sky they should be. If right, the data from Gaia, soon to be released, should prove them right or wrong.

Stars in the Milky Way so old they predate it

Astronomers have discovered stars inside the Milky Way that are thought to be so old that they were formed prior to the existence of the galaxy, and that the Milky Way formed around them.

The stars, found near the centre of the Milky Way, are surprisingly pure but contain material from an even earlier star, which died in an enormous explosion called a hypernova. “These pristine stars are among the oldest surviving stars in the Universe, and certainly the oldest stars we have ever seen,” said Louise Howes, lead author of the study published in the latest issue of Nature. “These stars formed before the Milky Way, and the galaxy formed around them,” said Ms Howes, a PhD student at the ANU Research School of Astronomy and Astrophysics.

Not surprisingly, the discovery challenges theories that describe the early universe.

The largest astronomical image ever

Astronomers have assembled the largest single image of the entire Milky Way ever taken.

It is 46 billion pixels across.

The amazing view of the Milky Way was built out of 268 individual views of the galaxy that includes the sun and the Earth, captured night after night over the course of five years with telescopes in Chile’s Atacama Desert. Astronomers at Ruhr-Universität Bochum used the data to examine stars whose brightness changes over time — and the image portrays more than 50,000 new objects with variable brightness that have never been recorded before.

Milky Way’s central black hole is getting active

The uncertainty of science: Sagittarius A* (pronounced A-Star), the Milky Way’s supermassive central black hole, has shown signs of increased activity in recent months.

The new study reveals that Sagittarius A* (Sgr A* for short) has been producing one bright X-ray flare about every ten days. However, within the past year, there has been a ten-fold increase in the rate of bright flares from Sgr A*, at about one every day. This increase happened soon after the close approach to Sgr A* by a mysterious object called G2.

“For several years, we’ve been tracking the X-ray emission from Sgr A*. This includes also the close passage of this dusty object” said Gabriele Ponti of the Max Planck Institute for Extraterrestrial Physics in Germany. “A year or so ago, we thought it had absolutely no effect on Sgr A*, but our new data raise the possibility that that might not be the case.”

G2 was first thought to be a cloud that would be ripped apart as it passed close to Sgr A*, causing an outburst of activity. When it wasn’t ripped apart and there was no immediate increase in activity astronomers concluded that G2 was a star surrounded by dust which was generally unaffected by its close fly-by of the black hole.

The timing of this new activity now is puzzling. It comes much later than it should have if it was caused by G2, but astronomers don’t have any other explanation for it. It might be because of G2’s fly-by, or maybe the activity is just the natural variability of this poorly understand object. Either way it illustrates how little we really know about the behavior of giant black holes.

Mysterious X-rays at the center of the galaxy

The uncertainty of science: The x-ray space telescope NuSTAR has detected high energy x-rays at the center of the Milky Way coming from no obvious source.

In and of themselves, X-rays from the galactic center aren’t unusual. But the X-rays NuSTAR detects don’t seem to be associated with structures already known to exist. For example, a supernova remnant named Sgr A East emits low-energy X-rays but not high-energy X-rays. The high-energy blotch doesn’t correlate with structures seen in radio images either, such as the dust and gas clouds of Sgr A West that are falling toward the supermassive black hole.

Instead, Perez and her colleagues propose that thousands of stellar corpses could be responsible for the high-energy X-rays: massive (and still-growing) white dwarfs, spun-up pulsars, or black holes or neutrons stars feeding on low-mass companion stars.

All of their proposed solutions, however, have serious problems explaining all of the data.

The Milky Way is like ripples in a pond

Milky Way ripples

The uncertainty of science: New survey data of the stars in the Milky Way suggest that the galaxy is not only corrugated with concentric ripples — like you’d see if you dropped a stone in a pond — it is also about 50% larger than previous estimates.

I have watched the size of the Milky Way fluctuate up and down depending on the research for the past forty years. Sometimes it is larger than expected. Sometimes smaller. Without doubt we are getting a better idea of its actual size, but don’t be surprised if the numbers continue to bounce about for decades, even centuries, to come.

The confirmation that the spiral arms are the equivalent of ripples in a pond is also not surprising, as it confirms the intuitive conclusion of anyone who looks at a whirlpool-shaped spiral galaxy: It is a whirlpool spiraling into the gravity well at its center.

New Hubble images to celebrate its upcoming 25th anniversary

The Space Telescope Science Institute (STScI) that operates the Hubble Space Telescope yesterday released two spectacular new images at the January meeting of the American Astronomical Society.

They also announced new data from Hubble that suggests a major eruption had occurred at the center of the Milky Way about two million years ago.

G2 survives Milky Way center fly by

The uncertainty of science: The gas cloud, dubbed G2, that was going to be eaten by the supermassive black hole at the center of the Milky Way as it did a close fly-by this summer has instead turned out to be a massive star formed when the star’s of its binary system merged.

G2 survived the fly-by, produced no big fireworks which were what was predicted if it has been a gas cloud. The data now suggests that the object is instead a very big star formed when two stars merged.

Massive stars in our galaxy, [astronomer Andrea Ghez] noted, primarily come in pairs. When the two stars merge into one, the star expands for more than one million years “before it settles back down,” Ghez said. “This may be happening more than we thought; the stars at the center of the galaxy are massive and mostly binaries. It’s possible that many of the stars we’ve been watching and not understanding may be the end product of a merger that are calm now.”

Be warned that this new hypothesis about G2 has its own uncertainties. Better data might eventually find it to be something else again.

G2 survives fly-by of Milky Way’s supermassive black hole

The uncertainty of science: The mysterious object G2, thought by astronomers to be either a cloud or a star, has survived its close fly-by of Sagittarius A* (pronounced A-star), the supermassive black hole at the center of the Milky Way, without telling scientists whether it is a cloud or a star.

Not only do astronomers still not know clearly what G2 is, the Milky Way’s supermassive black hole continues to behave in ways that baffle them.

New measurements cut dark matter in Milky Way by half

The uncertainty of science: New more robust measurements by Australian astronomers has shown that the amount of dark matter in the Milky Way galaxy is about half of what previous measurements had estimated.

Without doubt something is causing the outer stars in galaxies to orbit their galaxies at much greater speeds than they should. The answer that astronomers have posited since the late 1950s is that there is additional unidentified mass, dubbed dark matter, lurking as a halo around each galaxy, pulling on those outer stars and making them move faster.

The problem remains that no one has as yet detected this unidentified dark matter. Moreover, there are enormous uncertainties in the measurements of the motions of stars. This result helps narrow those uncertainties.

Universal Big Bang lithium deficit confirmed

The uncertainty of science: New data from a globular cluster in nearby dwarf galaxy has confirmed that the deficit of lithium that astronomers have found in the Milky Way also exists in other galaxies.

According to the Big Bang theory, the amount of lithium in the universe should be two or three times more than it is. This result shows that the deficit exists outside the Milky Way, which suggests strongly that something significant is wrong with the Big Bang theory.

1 2