Tag Archives: Proxima Centauri

Plotting the interstellar path to Proxima Centauri

Scientists have calculated the slingshot route that Breakthrough Starshot’s tiny interstellar spacecraft should take in order to reach Proxima Centauri while also gathering the maximum scientific data while zipping past the binary stars of Alpha Centauri.

The solution is for the probe’s sail to be redeployed upon arrival so that the spacecraft would be optimally decelerated by the incoming radiation from the stars in the Alpha Centauri system. René Heller, an astrophysicist working on preparations for the upcoming Exoplanet mission PLATO, found a congenial spirit in IT specialist Michael Hippke, who set up the computer simulations. The two scientists based their calculations on a space probe weighing less than 100 grams in total, which is mounted to a 100,000-square-metre sail, equivalent to the area of 14 soccer fields. During the approach to Alpha Centauri, the braking force would increase. The stronger the braking force, the more effectively the spacecraft’s speed can be reduced upon arrival. Vice versa, the same physics could be used to accelerate the sail at departure from the solar system, using the sun as a photon cannon.

The tiny spacecraft would first need to approach the star Alpha Centauri A as close as around four million kilometres, corresponding to five stellar radii, at a maximum speed of 13,800 kilometres per second (4.6 per cent of the speed of light). At even higher speeds, the probe would simply overshoot the star.

While most of this is hardly revolutionary, this is still the first time anyone has done the hard math based upon a real mission concept.

More details about Proxima Centauri’s Earthlike exoplanet

Link here. Lots of background into the discovery itself, but I think these paragraphs really sum things up:

“The search for life starts now,” says Guillem Anglada-Escudé, an astronomer at Queen Mary University of London and leader of the team that made the discovery.

Humanity’s first chance to explore this nearby world may come from the recently announced Breakthrough Starshot initiative, which plans to build fleets of tiny laser-propelled interstellar probes in the coming decades. Travelling at 20% of the speed of light, they would take about 20 years to cover the 1.3 parsecs from Earth to Proxima Centauri.

Proxima’s planet is at least 1.3 times the mass of Earth. The planet orbits its red-dwarf star — much smaller and dimmer than the Sun — every 11.2 days. “If you tried to pick the type of planet you’d most want around the type of star you’d most want, it would be this,” says David Kipping, an astronomer at Columbia University in New York City. “It’s thrilling.”

The human race now has a real interstellar target to aim for. Don’t be surprised if we get there sooner than anyone predicts.

Earthlike exoplanet discovered orbiting the nearest star

Worlds without end: An Earthlike exoplanet has been discovered in the habitable zone and orbiting Proxima Centauri, the nearest star to the Sun.

The CBC/AP story above doesn’t give many details, mainly because this story is breaking the Thursday embargo, when the actual science paper will be released. Expect a lot more news stories then about this, which probably ranks as one of the biggest science discoveries in history.

Since the embargo is broken, here are some facts from one of the press releases:

The planet, called Proxima b, orbits its parent star every 11 days and has a temperature suitable for liquid water to exist on its surface. This rocky world is a little more massive than the Earth, and is the closest planet outside our solar system. Planets around other stars are commonly referred to as exoplanets.

…Although Proxima b orbits much closer to its star than Mercury does to the Sun in the solar system, the star itself is far fainter than the sun. As a result Proxima b lies well within the habitable zone around the star and has an estimated surface temperature that would allow the presence of liquid water. Despite the temperate orbit of Proxima b, the conditions on the surface may be strongly affected by the ultraviolet and X-ray flares from the star — these would be far more intense than those the Earth experiences from the Sun.

They first had a hint of the planet’s existence in 2013 (which explains the unsourced rumors I’ve heard periodcally in the past few years about a exoplanet around Proxima Centauri) and spent the past two-plus years making absolutely sure they understood their data.