MIT redwood forest design wins 2017 Mars City Design competition

A MIT design for an early Martian colony based on underground habitats topped by geodesic domes filled with redwood forests has won the 2017 Mars City Design competition.

At first glance, the MIT habitats don’t look very tree-like. They look more like giant glass balls sitting on the Martian plains, each housing 50 people. But, like real trees, much of the habitat is below the surface in the form of intricate tunnels that connect the spheres and provide protection from cold, radiation, micrometeorites, and other surface hazards. “On Mars, our city will physically and functionally mimic a forest, using local Martian resources such as ice and water, regolith or soil, and sun to support life,” says Sumini. “Designing a forest also symbolizes the potential for outward growth as nature spreads across the Martian landscape. Each tree habitat incorporates a branching structural system and an inflated membrane enclosure, anchored by tunneling roots. The design of a habitat can be generated using a computational form-finding and structural optimization workflow developed by the team. The design workflow is parametric, which means that each habitat is unique and contributes to a diverse forest of urban spaces.”

The habitats rely heavily on water, but not just for drinking, agriculture, or public fountains. It’s a key ingredient in making the domes habitable. “Every tree habitat in Redwood Forest will collect energy from the sun and use it to process and transport the water throughout the tree, and every tree is designed as a water-rich environment,” says Department of Aeronautics and Astronautics doctoral student George Lordos. “Water fills the soft cells inside the dome providing protection from radiation, helps manage heat loads, and supplies hydroponic farms for growing fish and greens. Solar panels produce energy to split the stored water for the production of rocket fuel, oxygen, and for charging hydrogen fuel cells, which are necessary to power long-range vehicles as well as provide backup energy storage in case of dust storms.”

This is a very nice concept, and an excellent approach. While they appear to assume the underground habitats will be artificially dug, there is no reason the tree domes can’t be placed over a Martian pit entrance to a cave.