NASA managers scrub September 27th SLS launch

NASA managers today decided that they had to scrub their attempt to launch SLS on September 27, 2022 due to a hurricane threatening Florida, and are instead preparing to roll the rocket back to the assembly building to protect it.

During a meeting Saturday morning, teams decided to stand down on preparing for the Tuesday launch date to allow them to configure systems for rolling back the Space Launch System rocket and Orion spacecraft to the Vehicle Assembly Building. Engineers deferred a final decision about the roll to Sunday, Sept. 25, to allow for additional data gathering and analysis. If Artemis I managers elect to roll back, it would begin late Sunday night or early Monday morning.

This will likely delay the launch until the late October launch window, or the mid-November window, as shown in this graph [pdf]. During this time engineers will certainly test and recharge the batteries that run the rocket’s flight termination system so that there will be no question they will work should the Space Force safety range officer need to destroy the rocket during launch.

NASA however now faces another quandary it has been avoiding for the past year. The stacking of the five segments of SLS’s two solid rocket strap-on boosters began in November 2020, two years ago. During the shuttle era and until last year, NASA had a rule that said a booster must launch within a year of stacking. The fear was that the weight of the solid rocket fuel could distort it over time, and possibly cause it to burn improperly once ignited. As these boosters are the equivalent of firecrackers — once you light them you can’t turn them off — NASA had chosen, until last year, to have a use-by date of one year for the boosters.

Now however NASA has abandoned that rule. The boosters have been stacked for twice that time, and the agency has to ask if it will be safe to use them. To change them out however will take at least three months, if not longer. The present set of boosters would have to be removed, and a new set stacked and installed.

I fully expect NASA to stay with these boosters, despite their age, once again violating its own safety rules, as it did routinely during the shuttle era (resulting in the loss of two shuttles and the death of fourteen astronauts). Though no humans will be on this test flight, this sloppy engineering culture clearly threatens the lives of the astronauts who will fly on the second Artemis SLS mission, around the Moon.

Range gives NASA waiver to launch SLS on September 27th, despite a questionable flight termination system

In a briefing today, NASA officials confirmed that they are proceeding with their September 27, 2022 first launch of the SLS rocket, having obtained a waiver from the Space Force’s range office on testing the batteries for the flight termination system that would destroy the rocket should it begin flying out of control.

During a Sept. 23 teleconference, NASA announced an extension for the flight termination system battery certification, which expired after 25 days on Sept. 6. Now the Space Force’s Eastern Range has granted a waiver to allow the rocket to launch as late as Oct. 2 before needing to be returned to the Vehicle Assembly building to recertify the batteries.

The flight termination system is only used in the event the rocket veers off course during a launch anomaly.

Note that the 25 day use-by limit was actually an extension itself, as these batteries had been previously required testing every 20 days. Now the range is willing to let them go for as long about 50 days without testing, a two and half times increase.

If the rules before — based on engineering — said the batteries were not reliable after 20 days, why are those batteries now considered reliable up to 50 days? What facts or data does NASA or the Space Force have to allow this waiver? And if they have no data, it seems almost criminal to allow the go-ahead of this launch of a giant untested rocket on its first lift-off. Should something go seriously wrong — which is not that unlikely — and the flight termination system fails to work, we could see a very big rocket careening out-of-control into populated areas.

We all hope SLS launches with no problem on September 27th. We now have a really serious reason for that desire.

Regardless, the launch is now scheduled for a 70-minute launch window that opens at 11:37 am (Eastern) on September 27th, with a back-up launch window on October 2nd of 102 minutes beginning at 2:52 pm (Eastern).

Meanwhile, a developing tropical storm could put a kabosh on all these plans, forcing NASA to roll SLS back to the assembly building anyway. NASA managers plan to meet again before launch to make a decision.

SLS fueling test completed

NASA engineers today successfully completed the tanking test of the agency’s SLS rocket, completing all objectives after successfully dealing with a hydrogen fuel leak at the beginning of fueling.

The four main objectives for the demonstration included assessing the repair to address the hydrogen leak identified on the previous launch attempt, loading propellants into the rocket’s tanks using new procedures, conducting the kick-start bleed, and performing a pre-pressurization test. The new cryogenic loading procedures and ground automation were designed to transition temperature and pressures slowly during tanking to reduce the likelihood of leaks that could be caused by rapid changes in temperature or pressure. After encountering the leak early in the operation, teams further reduced loading pressures to troubleshoot the issue and proceed with the demonstration test. The pre-pressurization test enabled engineers to calibrate the settings used for conditioning the engines during the terminal count and validate timelines before launch day to reduce schedule risk during the countdown on launch day.

Teams will evaluate the data from the test, along with weather and other factors, before confirming readiness to proceed into the next launch opportunity. The rocket remains in a safe configuration as teams assess next steps. [emphasis mine]

The highlighted words are key. NASA has proposed a September 27, 2022 launch date. For that launch to occur, the rocket must remain on the launchpad, where it is impossible to check the batteries for operating the flight termination system used by the military range office to destroy the rocket should it go wildly out of control during launch. To check the batteries they need to roll it back to the assembly building, and one week is simply not enough time.

The vagueness of the highlighted language suggests that NASA has not yet gotten a waiver from the range for that date. Nor should it. Those batteries normally have a 20-day limit. On September 27th they will been unchecked for about 42 days, well past their use-by date.

This will be the first test launch of this rocket. Such first launches very frequently go wrong, and if SLS goes wrong, it would go wrong in a very big way, considering the size of the rocket. To do such a risky launch with a questionable flight termination system would not simply be improper it would be downright criminal.

Hydrogen leak detected during today’s SLS tank test

Though engineers have apparently overcome the issue so that today’s tank test of NASA’s SLS rocket can continue, a hydrogen leak was nonetheless detected during fueling.

The fueling tank test is not yet complete.

At this moment I cannot imagine the military’s range office will allow NASA to launch on September 27th, as the agency has requested. To do so will require the range to ignore the possibility that the flight termination is inoperable, as its batteries are past their use-by date by almost a month. Combined with these ongoing leak issues, it would be irresponsible to do otherwise.

NASA revises its SLS launch schedule, pending approval of the range’s safety office

NASA today announced that it is now targeting September 27, 2022 for the first test launch of its SLS rocket and Orion capsule.

Engineers have — on the launchpad — completed the repair work on the hydrogen leak that caused the previous launch scrubs. The plan now is to do a test fueling on September 21st to see if the repair worked.

If all is then well, the agency wants to launch on September 27th. To do so however NASA needs to get the approval of the safety range office to waive the use-by date of the batteries used to terminate the flight after launch, should something go seriously wrong. The rules require those batteries to be checked every 20 days, and as of today they have been in use for 31 days. The range had already given NASA a five day waiver so it could try to launch on September 5. To launch on September 27th will require the range to allow those batteries to remain unchecked for 46 days, more than double their accepted use-by date.

For the range to allow such a waiver would be I think entirely unprecedented, especially for the very first launch of a new rocket. Such test launches are exceedingly risky. A lot can go wrong, and often does when a rocket tries to fly for the first time. To allow such a lift-off with a questionable flight termination system seems completely insane and irrational.

NASA is also proposing an October 2nd launch date. I suspect this date is based on the range safety office refusing to give this waiver. If so, NASA would then do its September 21st fueling test on the launchpad, quickly roll the rocket back to the assembly building to check the batteries, and then try to get it back to the launch pad in time for that October 2nd date.

NASA wants to launch SLS in September; needs range safety office waiver to do it

In outlining the status of the repair work on the hydrogen leak on SLS on the launchpad yesterday, NASA officials indicated that they are targeting a September 23rd launch date that will require the Space Force range safety office to okay the use of a flight abort system with batteries that are significantly past their use-by date.

NASA has submitted a request to the Eastern Range for an extension of the current testing requirement for the flight termination system. NASA is respecting the range’s processes for review of the request, and the agency continues to provide detailed information to support a range decision.

The range office had required that the batteries for that flight termination system be checked every 20 days, a process that requires the rocket to be rolled back to the assembly building. It had already given NASA a five day extension to 25 days, but even that was insufficient to get the rocket launched in its previous launch window, expiring on September 6th. Though NASA has not said how long an extension it is requesting, to do a September 23rd launch would require another extension of 17 days, making for a total 23-day waiver for those batteries. Thus, instead of limiting the life of those batteries to 20 days, NASA is requesting the range to allow the batteries to go unchecked for 43 days, at a minimum.

For the range to give that first waiver I think is somewhat unprecedented. To do it again, for that much time, seems foolish, especially as this will the rocket’s first launch, and a lot can go wrong.

NASA officials also hinted during yesterday’s press conference — in their bureaucrat way — that human error might have caused the hydrogen leak.

NASA has not confirmed if an “inadvertent” manual command that briefly overpressurized the hydrogen fuel line caused the leak, but the agency is investigating the incident. Bolger said new manual processes replaced automated ones during the second attempt and the launch team could have used more time to practice them. “So we didn’t, as a leadership team, put our our operators in the best place we could have,” Bolger said. During the Sept. 17 fueling test, NASA will try out a slower, “kinder and gentler” process that should avoid such events.

If the Space Force and the Biden administration demand the range officer allow this rocket, with this team, to be launched with a questionable flight termination system, we should expect public resignations from several range officers. Whether anyone in our present government however has the ethics to do such a thing appears very doubtful.

NASA to roll SLS back to assembly building, delaying launch by weeks at minimum

NASA managers today decided they will not attempt another launch of SLS during the present launch window that closes on September 6, 2022, and will bring the rocket back to assembly building for more detailed trouble-shooting.

Engineers not only need to solve the hydrogen fuel leak in a fuel line connection that caused today’s launch scrub, they will also have to replace the flight termination batteries needed in case the rocket has to be destroyed during liftoff because it is flying out of control. These batteries only have a few weeks life, and the launch delays this week caused them to reach their limit.

The next launch windows are either from September 19 to October 4, excluding September 29-30, or October 17 to October 31, excluding October 24, 25, 26, and 28.

At that point SLS’s two solid rocket strap-on boosters will have been stacked for about two years, one full year past what NASA once considered their safe lifespan. The agency has waived that rule for SLS, but waiving it for more than a full year might simply be too risky. If the boosters need to be replaced, that will delay the launch by at least another three months, at the minimum.

Right now the odds remain high this launch will not occur in 2022.

SLS test launch scrubbed again

NASA engineers once again were forced to scrub the launch of the SLS rocket today due to another hydrogen leak during fueling.

The launch director waived off today’s Artemis I launch attempt at approximately 11:17 a.m. EDT. Teams encountered a liquid hydrogen leak while loading the propellant into the core stage of the Space Launch System rocket. Multiple troubleshooting efforts to address the area of the leak by reseating a seal in the quick disconnect where liquid hydrogen is fed into the rocket did not fix the issue.

NASA has one more chance, on September 5th, to launch this rocket before it must return it to the assembly building to replace the flight termination batteries, used to abort the launch after liftoff should something go seriously wrong during flight. As I understand it, their use-by date is September 6th, and it would require a major safety waiver by the military range officer, who is entirely independent from NASA and under no obligation to it, to allow for a launch after that date with those batteries.

NASA thinks engine issue on SLS launch caused by misreading sensor

NASA engineers have now concluded that the improper temperatures in one engine in SLS’s core stage that forced the August 29, 2022 launch to be scrubbed were caused by a faulty sensor, and that the actual temperatures in the engine were correct.

During a news conference on Tuesday evening, NASA’s program manager for the SLS rocket, John Honeycutt, said his engineering team believed the engine had actually cooled down from ambient temperature to near the required level but that it was not properly measured by a faulty temperature sensor. “The way the sensor is behaving does not line up with the physics of the situation,” Honeycutt said.

The problem for NASA is that the sensor cannot be easily replaced and would likely necessitate a rollback to the Vehicle Assembly Building at Kennedy Space Center in Florida, a few kilometers from the launch pad. This would delay the launch of the rocket at least into October, and the space agency is starting to get concerned about wear and tear on a rocket that has now been stacked for nearly a full year.

With this SLS rocket, NASA management is now trapped between a rock and a hard place. The rocket’s solid rocket boosters has been stacked for just short of two years, almost a full year beyond their use-by date. Moreover, there are batteries on the rocket that only function for about a month before they must be replaced. Their replacement date is September 6th, which means if NASA cannot get the rocket launched by that date it will have to return it to the assembly building, delaying the launch to at least October. If it has to replace the solid rocket boosters the launch will likely then be delayed until next year, which will seriously impact the second SLS launch, set to send astronauts around the Moon and back.

At the moment the launch is scheduled for a two hour launch window beginning at 2:17 pm (Eastern) on Saturday, September 3, 2022. The countdown will be live streamed here. At the moment the weather for Saturday has improved, with s 60% chance the launch can proceed.

SLS launch scrubbed

An issue in one of the refurbished shuttle main engines that are used in SLS’s core stage caused the launch today to be scrubbed.

The launch director halted today’s Artemis I launch attempt at approximately 8:34 a.m. EDT. The Space Launch System rocket and Orion spacecraft remain in a safe and stable configuration. Launch controllers were continuing to evaluate why a bleed test to get the RS-25 engines on the bottom of the core stage to the proper temperature range for liftoff was not successful, and ran out of time in the two-hour launch window. Engineers are continuing to gather additional data.

More information here and here. From the second link:

The four RS-25 engines on Artemis I are ones that were still in service at the end of the Shuttle program. But, for Artemis I, at least one component on each of the Core Stage engines comes from the three engines that powered Columbia to orbit on STS-1 on April 12, 1981. “It might be a valve, it might be a bolt, for others, it’s pieces of wiring, little things like that,” said Aerojet Rocketdyne’s Bill Muddle, RS-25 lead field integration engineer, in an interview with NASASpaceflight. “But there is something from the STS-1 engines on each of these [for Artemis I].”

Originally NASA had wanted to do this same bleed test during one of the two wet dress rehearsal countdowns prior to today’s launch attempt, but other issues with the rocket during those rehearsals made it impossible. As a result, the agency discovered this issue during the launch countdown.

Nor was this engine problem the only issue during this morning’s countdown.
» Read more

How SLS reveals the difference between state-run propaganda and real journalism

The cost of SLS

On August 29, 2022, NASA will attempt the first launch of a government-built, government-owned, and government-designed rocket in more than a decade. The rocket’s development took more than eighteen years, moved in fits and starts due to political interference and mandates, cost more than $50 billion, and has been both behind schedule and overbudget almost from day one. Along the way NASA management screwed up the construction of one multi-million dollar test stand, built another it will never use, mismanaged that test program, dropped a rocket oxygen tank, and found structural cracks in an early Orion capsule.

This dubious achievement, even if the launch and month-plus-long mission of the Orion capsule to lunar orbit and back is a complete success, is hardly something to tout. NASA claims it and this rocket will make it possible for America to explore the solar system, but any honest appraisal of SLS’s cost and cumbersome design immediately reveals that claim to be absurd. SLS can launch at best once per year, and in truth will likely lift off at a much slower rate. It will also eat up resources in the American aerospace industry from technology better designed, more efficient, and more capable of doing the job.

Worse, the generally sloppy management of this program, with numerous major errors in design and construction, raises serious questions about the safety of any future manned flight.

And yet, as this launch day approaches, the American established press is going ga-ga over SLS. Below are just a small sampling:
» Read more

NASA lists 13 candidate landing sites for Artemis-3 manned mission

Candidate landing sites for Artemis-3
Click for original image.

NASA yesterday revealed its first preliminary list of thirteen candidate landing sites for the Artemis-3 manned mission, the first manned mission the agency wants to send to the Moon in 2026.

The image to the right, reduced, enhanced, and annotated by me to post here, shows these thirteen zones in blue. I have added the red dot to mark what I understand to be the planned landing zone of Viper, an unmanned rover that NASA hopes to launch by ’23 at the latest. From the press release:

The team identified regions that can fulfill the moonwalk objective by ensuring proximity to permanently shadowed regions, and also factored in other lighting conditions. All 13 regions contain sites that provide continuous access to sunlight throughout a 6.5-day period – the planned duration of the Artemis III surface mission. Access to sunlight is critical for a long-term stay at the Moon because it provides a power source and minimizes temperature variations.

Note that this mission will land a Starship with crew at this South Pole region. That spacecraft’s large payload capacity likely means that it could conceivably leave behind supplementary supplies for a follow-up next mission, and thus speed up development of the first lunar base.

August 18, 2022 Quick space links

As stringer Jay correctly noted to me in an email today, “Slow news day.” None of the stories below merit a full post, even though they are pretty much all of today’s space news.

SLS arrives at launchpad

The Space Launch System rocket (SLS) that will fly on NASA’s first test launch of this rocket on August 29, 2022 has finally arrived at its launchpad, seven years late and about $20 billion overbudget.

In the coming days, engineers and technicians will configure systems at the pad for launch, which is currently targeted for no earlier than Aug. 29 at 8:33 a.m. (two hour launch window). Teams have worked to refine operations and procedures and have incorporated lessons learned from the wet dress rehearsal test campaign and have updated the launch timeline accordingly.

The rollout from the Vehicle Assembly Building took ten hours.

August 15, 2022 Quick space links

From Jay, BtB’s stringer:

NASA sets tentative launch date for SLS

NASA yesterday announced that it is targeting August 29, 2022 for the first unmanned launch of its SLS rocket.

NASA is tentatively targeting Aug. 29 for the long-awaited maiden flight of the agency’s huge Space Launch System moon rocket, officials said Wednesday. But they cautioned major challenges remain for the oft-delayed rocket and an official date will not be set until later.

As it stands, the launch processing schedule is extremely tight and depends on successful checkout of a repaired hydrogen line fitting, good results from end-to-end pre-flight checks of the rocket’s myriad other systems and getting everything done in time to haul it back out to the launch pad by around Aug. 18.

If any delays occur, this launch window extends until September 6th. If they can’t make that date, the next launch window opens on September 19th.

The mission, to send the Orion capsule around the Moon and back, would last 42 days and if launched as planned would return October 10th.

The announcement also slipped in this tidbit:

If the initial test flight goes well, NASA plans to launch four astronauts atop the second SLS rocket for an around-the-moon shakedown flight in 2024 — Artemis 2 — before sending the first woman and the first person of color to a landing near the moon’s south pole in 2025 or 2026 as part of the Artemis 3 mission. [emphasis mine]

This I think is the first time NASA officials have hinted that the launch might be delayed to ’26. It is no surprise, but as they have always done with SLS, they give these hints softly, prepping the press so that it doesn’t make news.

As for the disgraceful unseemly focus on race and sex, it appears that NASA is now an apartheid state. The make-up of missions will no longer be determined by skill and experience, but by ethnic considerations, with favoritism always given to minorities or women.

NASA now targeting late August launch of SLS

NASA officials today confirmed that they are satisfied with the results from this week’s incomplete dress rehearsal countdown of the SLS rocket, and are targeting a late August launch of SLS.

NASA officials have reviewed the data collected during the test run and decided that a leaky hydrogen valve was not significant enough to force a delay in the launch of Artemis I, an uncrewed mission planning to orbit the moon and return to Earth. It’s the first step toward putting humans back on the moon for the first time since Apollo 17 in 1972.

“The team is now ready to take the next step and prepare for launch,” said NASA’s deputy associate administrator Tom Whitmeyer.

NASA officials said they will roll the massive Space Launch System rocket back to the Vehicle Assembly Building, where the valve’s faulty seal will be replaced. Rollback is slated for Friday July 1, though weather concerns could push that back.

SLS won the five-plus year race with the Webb telescope on which would have the most delays and launch last. Now the race will be between SLS and SpaceX’s Starship/Superheavy. Which will launch first this summer? In a rational world, SLS should win hands down. It has been in development since 2004, while Starship only began design work in 2017.

This is not a rational world, however, and SLS’s long gestation had little to do with designing a rocket and everything to do with politics and a corrupt Congress and an incompetent NASA. The rocket that has come out of this is thus difficult to operate and incredibly cumbersome. Its components have also not been tested thoroughly.

SpaceX meanwhile has been designing and building its heavy-lift rocket with only one goal: the rocket must be efficient to operate.

I predict Starship will reach orbit first, though if it doesn’t it most likely will be because SpaceX finds it needs to do more ground tests and revisions, not because SLS has surged ahead. And regardless, Starship will likely fly many times in the next three years, while SLS will only get off the ground once.

More important, the chances of SLS and Orion working perfectly throughout that that lunar orbit mission seem almost impossible, based on track record during the past eighteen years of both programs. Expect some issues to crop up, first during the launch countdown, forcing several scrubs, and then during the mission itself. None might be mortal, but all will raise questions whether it would be wise to put humans on this rocket and capsule on its next flight, and attempt to take them to the Moon.

SLS dress rehearsal countdown ends at T-29 seconds

NASA’s fourth attempt to complete a full dress rehearsal countdown of its giant SLS rocket today ended at T-29 seconds, just short of the complete countdown.

It appears the countdown had one issue — a hydrogen fuel leak at the point where the umbilical fuel line attaches to the rocket — that mission control decided to ignore (or “mask” to use their word) so that they could proceed into the count as far as possible. It was this decision however that caused the two-hour delay in the countdown. They then resumed the countdown at T-10 minutes, the beginning of terminal count.

During the terminal count, the teams performed several critical operations that must be accomplished for launch including switching control from the ground launch sequencer to the automated launch sequencer controlled by the rocket’s flight software, and important step that the team wanted to accomplish.

NASA will hold a press conference tomorrow at 11 am (Eastern) to discuss the results of this dress rehearsal. While the leak is concerning, I expect NASA to decide that this dress rehearsal was a success, that they will roll the rocket back to the vehicle assembly building where they will fix this problem, after which the agency will declare the rocket ready to launch by the end of August.

While risky, doing otherwise likely raises other risks. If they decide to do another dress rehearsal the launch faces more delays. And waiting much longer continues to increase the danger that the solid rocket side boosters will not function as intended because they have been stacked almost a year longer than their accepted use-by date.

If this turns out to be the plan, expect the actual launch countdown to be as plagued with issues and delays and scrubs. NASA has yet to demonstrate it can do this smoothly with no problems. Worse, this level of mediocre performance has been par for the course for this entire SLS program.

If that launch should go smoothly it will be a welcome and unprecedented event.

SLS dress rehearsal countdown continues, though T-0 delayed two hours

The SLS dress rehearsal countdown is proceeding today as planned, though the countdown’s end at T-0 is now 4:38 pm (eastern), two hours later than previously announced.

Apparently they have delayed T-0 from the beginning of the two-hour simulated launch window to its end. This decision so early in the count suggests the launch team wants to give itself extra time either to deal with some issue that has come up that they haven’t told us about yet, or to give themselves more time in case some issue should come up.

SLS dress rehearsal countdown begins

NASA engineers began their fourth attempt to complete a full dress rehearsal countdown of the SLS rocket yesterday, with everything proceeding so far as planned.

Overnight, engineers powered up the Orion spacecraft and the Space Launch System’s core stage. Teams also configured several systems on the ground, rocket, and spacecraft and performed activities to prepare umbilicals that connect the rocket and spacecraft to the mobile launcher and are used to provide power, communications, coolant, and propellant.

Actual fueling begins tomorrow, when the countdown is supposed to conclude at T-0 at 2:40 pm (Eastern).

NASA live stream is available here.

SLS dress rehearsal countdown set for June 20th with launch delayed again

According to NASA officials, the next attempt to complete a dress rehearsal countdown for its SLS rocket will take place on June 20, 2022, with the earliest date an actual launch can occur delayed again, and now set at best for an August 23 to September 6 window.

The article also notes that during a different press conference, NASA administrator Bill Nelson hinted that “there could be slips” in the present target date of ‘2025 for landing humans on the Moon.

Ya think? I guarantee that NASA will not land humans on the Moon in ’25, at least not using SLS. Based on all the issues confronting SLS, as well as NASA’s normal way of doing things, this mission will certainly slip at least one to two more years. And I am being very very very very optimistic.

We must also note that when first proposed by Bush Jr. in 2004, he predicted a NASA manned lunar landing by 2015, which means this launch will be at least one decade behind schedule, with it more likely being later than that.

But then, I can hear our glorious president yelling at me for complaining. “C’mon man! What’s a decade or two when you’re scheduling something important?”

SLS’s 2nd mobile launcher to cost more than $1.5 billion, 3x what was initially budgeted

SLS's two mobile launchers, costing $1 billion
NASA’s bloated SLS mobile launchers

According to an inspector general report [pdf] released today, the second mobile launcher being built by the company Bechtel to transport its SLS rocket from the assembly building to the launch site is likely going to cost more than $1.5 billion, three times what was initially budgeted, and will not be completed any earlier than the end of 2027, four years behind schedule.

Compounding Bechtel’s projected cost increases and schedule delays, an ML-2 [mobile launcher-2] project analysis provided only a 3.9 percent confidence level that the nearly $1 billion cost [twice the original budget] and October 2025 [2.5 years late] delivery estimates were accurate. NASA requires projects to develop budgets and schedules consistent with a 70 percent joint cost and schedule confidence level (JCL), meaning a 70 percent likelihood the project will finish equal to or less than the planned costs and schedule. In fact, an Independent Review Team analysis determined the project would require an additional $447 million and 27 months, for a total contract value of $1.5 billion and a launcher delivery date of December 2027—a schedule that would enable an Artemis IV launch no earlier than the end of 2028.

The first mobile launcher, shown on the left in the graphic, cost more than $1 billion and will used only three times, at most. The second, on the right, is required for all of the assigned interplanetary tasks being given to the full size version of SLS beyond those first three test flights. Without it that version of SLS cannot launch. And even if the launcher is ready by 2028, as the IG report suggests, that will be more than a decade behind schedule, and six years from now.
» Read more

SLS next dress rehearsal countdown scheduled for June 19th

NASA has now scheduled the next dress rehearsal countdown for its SLS rocket for around June 19th, with the rocket beginning its trip to the launch site on June 6th.

It appears the issues that prevented the completion of the dress rehearsal in April have all been addressed:

While inside the Vehicle Assembly Building (VAB), teams completed several major objectives, including assessing the liquid hydrogen system leak at the tail service mast umbilical, replacing the interim cryogenic propulsion stage (ICPS) gaseous helium system check valve and support hardware, and modifying the ICPS umbilical purge boots. The addition of hazardous gas detectors above the upper stage allows for additional visibility into any potential leaks during cryogenic operations.

Other than the rollout on June 6th, all future dates remain flexible, depending on what happens step-by-step.

SpaceX seeking another $1.725 billion in investment capital

Capitalism in space: SpaceX has begun another private funding round, now asking for $1.725 billion in new investment capital.

The space venture is looking to bring in up to $1.725 billion in new capital, at a price of $70 per share, according to a company-wide email on Friday obtained by CNBC. Notably, SpaceX split its stock price 10-for-1 in February, which reduced the common stock to $56 a share – with the new valuation representing a 25% increase.

When added to past funding rounds — and including the $2.9 billion provided by NASA for turning Starship into a manned lunar lander — SpaceX will have raised approximately $12 billion total for building Starship.

Sounds like a lot, doesn’t it? Well, compared to what NASA has spent for its expendable SLS rocket (about $60 billion), $12 billion is chicken feed, especially because Starship will not be expendable, but entirely reusable.

If this contrast doesn’t illustrate the strength of freedom, competition, and private enterprise over government, I don’t know what does. Government, not caring about making a profit, produces a disposable rocket costing many billions, and takes two decades to do it. Private enterprise in comparison also wants a big rocket, but it also doesn’t look kindly on throwing away its investment with each launch. It instead insists the cost to build it be constrained, as well as the time to do it.

The result: Government accomplishes little and wastes a lot. Private enterprise makes it happen, and quickly for a reasonable cost.

NASA announces new possible launch dates for first SLS launch

NASA on May 16th announced the new possible launch dates for first SLS launch, outlining potential launch windows through the first half of 2023, with the first at the end of July 2022.

The calendar of launch windows through June of ’23 can be viewed here [pdf].

The July 26th to August 10th window is the one the agency is clearly targeting for that first launch, but it will not confirm this until after SLS successfully completes the next dress rehearsal countdown attempt in June. That the agency is now showing us potential launch dates in ’23 also suggests it is anticipating the possibility the launch could be delayed that much, especially if it determines it must replace the SLS’s two solid rocket boosters because they have been stacked unused for too long.

SLS was initially planned for a launch in 2015. It is now seven-plus years behind schedule, which is how long it took SpaceX to go from a blank sheet of paper to launching its Falcon Heavy for the first time.

1 2 3 4 14