Tag Archives: smallsats

Rocket Lab preps for 2nd flight of Electron

Capitalism in space: Smallsat rocket company Rocket Lab is preparing for the second test flight of its rocket Electron, now set for October.

The test flight will also carry four commercial nanosats.

Both Planet and Spire — two companies that operate small satellites in orbit — will have payloads on the Electron’s second test flight, dubbed “Still Testing.” The rocket will carry two of Planet’s Dove satellites, designed to image Earth, as well as two of Spire’s Lemur-2 satellites that track weather and ship traffic.

The company also states that if this second flight is successful, they might forego a third test flight and move directly to commercial operations.

Share

Lockheed Martin unveils standardized satellite lineup

Capitalism in space: In its new effort to upgrade its satellite business to compete in the new satellite business, Lockheed Martin today unveiled a new line-up of standardized satellite buses which customers could then build their specific satellites around.

The core elements of each bus will retain commonality with other buses for a wide range of components, including propulsion, reaction wheels, gimbals, power regulation, solar arrays, battery technology, thermal control and software and avionics. Such component commonality, Sears said, will enable the company to leverage its supply chain more effectively. Lockheed software systems will also make each bus rapidly reconfigurable, depending on the particular mission need or type of satellite.

The smallest member of the new lineup is the LM 50 series of flexible nanosat buses. Weighing 10 to 100 kilograms, the spacecraft are being develop with Terran Orbital, which, Sears said, offers advanced nanosat technology and operational experience that Lockheed lacks. Lockheed Martin Ventures announced in June an unspecified “strategic investment” in Terran Orbital, a nanosatellite manufacturer.

It is very clear that the company is anticipating a boom in smallsats, and is trying to market itself as the go-to place for having those satellites built.

Share

Federal bureaucracy prevents satellite launch

We’re here to help you! A suite of 8 private commercial cubesats that the Air Force had agreed to launch as secondary payloads on the August 26 launch of a Minotaur rocket were blocked from launch by FAA bureaucracy.

The “interagency partner” that appeared to raise objections was the Federal Aviation Administration, which issued the launch license for the mission. “The Federal Aviation Administration (FAA) did not approve Orbital ATK’s request for a license modification to include commercial cubesats on the upcoming ORS-5 launch mission,” Guthrie said. “As a result, Orbital ATK decided not to include commercial cubesats on the launch.”

Asked if the FAA placed any conditions or restrictions on the ORS-5 mission launched on the Minotaur 4, agency spokesman Hank Price said the FAA issued Orbital ATK a license Feb. 10 to launch government payloads on the Minotaur 4 from Cape Canaveral. The launch license contains any and all conditions on the license, Price said, and the FAA does not comment on the “existence or status of launch license applications or modifications until the FAA makes a final decision regarding those requests.”

Industry sources believe the FAA never formally rejected a proposed license modification for the cubesats because it did not go through the official process, but it was informally clear that the agency would have rejected such a modification had it been formally submitted.

Spire officials are trying to figure out why there was any issue at all about commercial cubesats on this launch. “If Spire chose this launch in the place of another commercial offering, I would understand the industry’s concern about fair competition,” Barna said. “But no existing U.S. launch company or new entrant was offering a similar launch. The fundamental intent of the policy is to keep competition fair, and competition just wasn’t a factor here.”

Spire’s problems here demonstrates the difficulties smallsat companies have getting their satellites in orbit, which explains the emergence of a new smallsat rocket industry. The company’s difficulties also illustrates why the launch industry should always be opposed to giving too much regulatory power to government. In this case it really appears that the launch license was denied merely because the bureaucrats involved with approving it at the FAA simply didn’t want to bother dealing with it.

Share

Cubesat builder becomes cubesat operator as well

Capitalism in space: Cubesat builder Clyde Space has commissioned its first satellite communications ground station, with three more planned.

Essentially, the company appears to be moving to fill a need expressed by its satellite customers. After building their satellite for them, their customers still need someone to run it for them, and the satellite maker is ideally positioned to win that role.

This story also illustrates the continuing simplification of the technology of the satellite industry. Ground stations used to be big complicated facilities, requiring big dishes and lots of land. Now they can simply install an antenna on the roof of a building.

Share

Lockheed Martin begins construction of new satellite factory

Capitalism in space: Lockheed Martin has begun construction of a $350 million satellite factory in Colorado, with expected completion in 2020.

At the moment, Lockheed does not have a competitive rocket. Moreover, its only big space project is Orion, which might never fly more than twice, if that. Thus, this shift to satellites makes some sense, as it will be difficult now for the company to gain market share in the launch and manned spacecraft markets. It is too far behind. However, there is a new industry developing in smallsats, and Lockheed is well positioned to get in at the start.

Update: I do this all the time, but I made a mistake here and assigned the Delta family of rockets to Lockheed Martin. For some reason I make this mistake often, switching Atlas 5 and Delta and Lockheed Martin and Boeing. I apologize for the error.

Share

Has India cut its cubesat launch prices?

Capitalism in space: A complex analysis of India’s recent launch prices suggests that ISRO reduced its cubesat launch prices when it launched a record-setting 103 satellites on the most recent PSLV launch.

The key paragraph however is this:

Small-satellite owners have long complained that the PSLV, whose reliability has been established in the market, has been slow to increase its launch tempo at a time of surging cubesat production. For the moment, none of these satellite customers’ launch options provide predictable launch cadence at affordable prices.

That may be about to change as several dozen vehicles designed specifically to accommodate the growing cubesat market are preparing to enter operations. Not all are likely to succeed in establishing a foothold, but the sheer number of them is impressive:

That makes it all the more important for ISRO’s Antrix Corp., the agency’s commercial arm, to cement a reputation for launch regularity and low prices.

In other words, because a flock of new smallsat launch companies, such as Rocket Lab, Vector, and Virgin Orbit, are about to enter the market ISRO is suddenly feeling the pressure, which is why they have cut prices as well as started to up their launch rate.

Isn’t competition wonderful?

Share

Surrey Satellite closing U.S. factory

Capitalism in space: Surrey Satellite Technology, one of the first companies to build smallsats and cubesats, is closing its U.S. factory in Colorado and concentrating its satellite work once again in the UK.

It appears the company might have gotten a little fat and lazy, and has allowed the competition to begin passing it by:

Parker said the exact number of people SST-US will let go has not been determined. SSTL’s decision to layoff workers in the U.S. is not related to the decline in geostationary telecommunications satellite orders that triggered a reduction in workers at Space Systems Loral, Parker said. The majority of SSTL’s business is in remote sensing, navigation and science — spacecraft typically found in non-geosynchronous orbits.

Instead, Parker said it was more out of concern that the smallsat movement the company had championed for years had picked up steam and was moving without SSTL. “We had grown slightly fatter, slightly more complacent, so we are doing a lot of work on our organization. We started last year and changed our organizational structure internally. We changed the way our teams are organized so we now have a much flatter structure with more autonomy,” she said.

SSTL is not reducing its headcount in the U.K., Parker said.

This kind of reminds me of ULA’s recent effort to streamline its operations, faced with competition from SpaceX. Here, Surrey is finding itself getting beat by a lot of new players, and had found it needs to reshape itself to survive.

Share

Vector obtains $21 million in funding

Capitalism in space: The smallsat rocket company Vector has obtained $21 million in new funding, making it possible for it to accelerate its test rocket schedule.

With this most recent round of funding, Vector will accelerate the company’s upcoming flight test series and launch orbital customer missions in early 2018. Vector’s next launch is planned for Summer 2017, making it the first launch ever from the historic Spaceport Camden in Georgia, where NASA tested rocket engines in the 1960s. In addition to flight test launch activities, Vector plans to develop its first GalacticSky satellites and break ground on a world-class rocket factory in Pima County, Arizona.

It seems that the smallsat market is going to get very crowded in the next few years. As much as I am in favor of this, we must also recognize that it is likely that the market will not be able to support all the companies now pushing to grab that business. Some are going to fail, though I have no idea at this point which companies that will be.

Not that this is a bad thing. Competition requires many companies. It also requires failure, balanced with much success.

Share

Russia moves to capture the smallsat launch market

Glavkosmos, a division in Roscosmos, Russia’s nationalized aerospace industry, is working to capture a large part of the new smallsat launch industry.

Glavkosmos, a subsidiary of Russian state space corporation Roscosmos, said June 14 that it will launch 72 small satellites as secondary payloads on the Soyuz-2.1a launch of the Kanopus-V-IK remote sensing satellite, scheduled for July 14 from the Baikonur Cosmodrome in Kazakhstan.

Vsevolod Kryukovskiy, launch program director at Glavkosmos, said in a June 19 interview that the smallsat customers for that launch come from the United States, Germany, Japan, Canada, Norway and Russia. He declined to identify specific customers, although he said they include both companies and universities. The spacecraft range in size from single-unit cubesats up to a 120-kilogram microsatellite. “We’ll do the most technically challenging cluster mission ever,” he said. The satellites will be deployed into three separate orbits, after which the rocket’s upper stage will perform a deorbit maneuver.

Kryukovskiy said Glavkosmos is also arranging the launch of secondary payloads on two Soyuz launches planned for December from the new Vostochny Cosmodrome in Russia’s Far East region. “We’ll have about 40 microsats that we’ll launch from Vostochny, and that will be the first international launch from this new Russian cosmodrome,” he said.

These numbers are in the same range as when India launched 103 smallsats on a single rocket, and suggest that Russia is trying to grab the market share that the new small rocket companies are aiming at.

Share

Rocket Lab gets another contract

Capitalism in space: With its first test launch set for Monday, Rocket Lab today earned a new launch contract, this time from Spaceflight, a company that acts as a charter company putting together launches for smallsat companies.

Spaceflight buys a launch from a rocket company, and then sells slots to smallsat companies that cannot afford to buy the whole launch. This way Spaceflight can tailor each launch to the needs of the different smallsats. Though they have previously purchased launches from India’s PSLV, Russia’s Dnepr, and SpaceX’s Falcon 9, Rocket Lab’s Electron fits this model more perfectly, because — as a small rocket designed for smallsats, it doesn’t require a lot of smallsats to fill its payload. Thus, they can offer the smallsats on board access to orbits not normally available. This will make it relatively easy to find customers for the launch.

Share

Automated factory to build smallsats

The competition heats up: While this story focuses on the hiring of the former head of Stratolaunch by smallsat company York Space Systems, the real lead is how York is building an automated factory on a Denver college campus that will churn out smallsats.

Last week, York announced that it will partner with Metropolitan State University to open an automated manufacturing facility on the school’s Denver campus this year. The startup’s flagship product is the “S-Class” satellite platform, designed to carry payload masses up to 85 kilograms. Building 200 satellites per year would put the company at about a third the production rate of OneWeb Satellites, the ambitious joint venture of OneWeb and Airbus seeking to build three satellites a day for OneWeb’s planned constellation low-Earth-orbit communications satellites.

York has 33 satellite platforms requested through letters of intent and other agreements, about half of which are firm commitments to buy satellites once available, Dirk Wallinger, chief executive of the 10-person startup founded in early 2015, told SpaceNews.

York’s approach to satellite manufacturing is to have standardized spacecraft models essentially pre-built for prospective customers, who can then outfit their satellites as desired, Wallinger said.

For more than a half century, satellites have been hand-made, each unique and crafted by teams of engineers in an expensive and slow process. That is finally changing.

I should add that this hiring of Stratolaunch’s former president is another indication that Stratolaunch might be in trouble.

Share

New commercial proposals for launching almost 15,000 satellites

The competition heats up: New applications filed by SpaceX and OneWeb with the FCC propose augmenting both companies’ previously proposed satellite constellations and raising the number of total satellites to be launched to almost 15,000 total.

SpaceX has filed a new application with the Federal Communications Commission (FCC) for approval to launch a constellation of 7,518 satellites to provide communications in the little used V band. The system is in addition to another constellations of 4,425 satellites (plus orbital spares) SpaceX proposed in November that would operate in the Ku and Ka bands. In total, the two constellations would have 11,943 spacecraft plus spares. “When combined into a single, coordinated system, these ‘LEO’ and ‘VLEO’ constellations will enable SpaceX to provide robust broadband services on a full and continuous global basis,” SpaceX said in its application.

Competitor OneWeb has submitted a new application that would add an additional 2,000 satellites capable of operating in the V-band to its planned constellation of 720 satellites.

These are all smallsats, which means they can be launched in bunches. Still, even if they are launched in groups of 100, it will still take 150 launches to get them all into orbit. That is a lot of business for the launch industry.

Share

SpaceX loses 89 smallsats due to delays

Spaceflight, a company that specializing in scheduling secondary payload launches for smallsat companies, this week pulled 89 satellites from SpaceX because of that company’s launch delays.

For more than a year, Seattle-based Spaceflight has been waiting to launch an array of 89 miniaturized satellites aboard a SpaceX Falcon 9 rocket and deploy them in orbit from its innovative SHERPA carrier.

Now the launch logistics company isn’t waiting any longer. All 89 satellites have been rebooked due to schedule concerns, Spaceflight’s president, Curt Blake, reported today in a blog posting. “We found each of our customers an alternative launch that was within the same time frame,” Blake wrote. “It took a huge effort, but within two weeks, the team hustled to have all customers who wanted to be rebooked confirmed on other launches!”

The SHERPA carrier had been slated as a secondary payload on the launch of Taiwan’s Formosat-5 satellite. It was put on SpaceX’s manifest since 2015, but the launch has been repeatedly delayed, in part due to the Falcon 9 rocket mishaps that occurred in mid-2015 and last September.

What is good about this is that the competition in the launch industry is now robust enough that these smallsats can find alternatives, and do it quickly. As good as SpaceX might be at some things, if the company doesn’s start fulfilling its promised launch schedule it will start to bleed customers more and more.

Unfortunately, the article doesn’t say which launch companies have now gotten this business. If I had to guess, I would bet that India got the contracts, based on their recent PSLV launch that put 103 smallsats into orbit. In arranging that launch ISRO had been very mobile, adding new smallsats to it quickly and very late in the launch schedule.

Share

India preparing rover for 2018 Moon landing

The competition heats up: India preparing rover for 2018 Moon landing.

Isro’s Satellite Applications Centre Director, M. Annadurai, revealed the tentative launch schedule while speaking to the press at the Satish Dhawan Space Centre, Shar, Sriharikota on Wednesday. He said a Lander and a six-wheeled Rover were being prepped to go with the Chandrayaan-II mission. The chief scientist added that a launch is likely to take place in the first quarter of 2018. According to Dr P.V. Venkita Krishnan, the director of the Isro Propulsion Complex at Mahendragiri, engineers were currently testing soft-landing engines.

India’s launch of a record 104 satellites on a single rocket has pumped up the Indian press, as there were almost 20 stories on space and that launch in their press today, almost all favorable.

This article however is from the U.S., and takes a look at the ineffective American space policy that supposedly forbids American companies from launching on Indian rockets.

The U.S. Commercial Space Launch Agreement of 2005 prohibits the launch of commercial satellites on the Indian vehicle. The reasoning is that struggling U.S. commercial launch providers needed time to establish themselves in the market and would be wiped out by India’s PSLV, which is developed by the Indian Space Organization.

Since 2015, commercial satellite owners have successfully obtained waivers to the policy.

The article notes India’s competitive prices, as well as the overall state of the smallsat industry and its dependence on bigger rockets as secondary payloads to get into space. India’s rockets, funded and subsidized by the government but also built to be inexpensive so as to attract customers, is clearly positioned to effectively compete with SpaceX, who until now charged the least.

What will our Congress do? My preference would be for them to repeal this part of the 2005 law so that American satellite companies can fly on whoever they wish. That would increase competition but it would also likely invigorate the overall launch industry because it would increase the satellite customer base for those rockets and thus create more business for everyone.

Sadly, I suspect that Congress will instead demand that the waivers to the law cease, and will thus block the use if Indian satellites by American companies. The short-sightedness of our politicians never ceases to surprise me.

Share

Japanese SS-520 rocket launch scrubbed due to weather

The launch of Japan’s new small rocket, SS-520, was scrubbed today due to bad weather.

Japanese officials announced a few minutes before the launch that the flight would be postponed due to bad weather at the space base. Authorities did not immediately set a new launch date.

The SS-520-4 will try to become the smallest rocket to ever put an object in orbit. Its sole payload is the six-pound (three-kilogram) TRICOM 1 spacecraft, a CubeSat from the University of Tokyo designed for communications and Earth observation experiments. Standing 31 feet (9.5 meters) tall and spanning around 20 inches (52 centimeters) in diameter, the SS-520-4 will blast off from a rail launch system and head east over the Pacific Ocean, dropping its lower two stages and payload enclosure into the sea in the first few minutes of the flight.

Primarily funded by a $3.5 million budget provided by the the Japanese government’s Ministry of Economy, Trade and Industry, the SS-520-4 program is a one-off demonstration by Japan’s space agency, which aims to validate low-cost technology and launch operations procedures for a future “nano-launcher” to deploy tiny satellites in orbit on dedicated rides.

The last paragraph is disappointing, but not surprising considering that this rocket is entirely owned and built by the government, which like NASA, routinely builds things and then abandons them, no matter how useful they are. I hope that some private company grabs the design here and runs with it.

Share

Japan unveils new small rocket

The competition heats up: Japan will this week inaugurate a new rocket, the SS-520, designed to launch smallsats quickly and cheaply.

The rocket is small, only 10 meters tall and 30 centimeters in diameter, and was developed for less than $3.5 million. It was developed by JAXA, Japan’s space agency, as a vehicle to encourage the growth of that nation’s smallsat industry.

Share

Vector successfully test fires its rocket engine

The competition heats up: Vector Space Systems has announced the successful first test firing of the first stage engine to be used on its Vector-R rocket.

The engine test, which took place in Mojave, Calif. on Dec. 8, featured a single piece, 3D AM printed injector developed in partnership with NASA’s Science, Technology, and Mission Directorate (STMD) Flight Opportunities, a program which extends research labs into space-relevant environments by partnering with small satellite launch companies. Earlier this year, NASA provided a grant to Vector to design and test the injector.

Vector continues to push the envelope by being the first in the industry to pursue the LOX/Propylene propellant combination, which created the highest thrust to date from a LOX/Propylene fueled engine. This test of the 5K-lbf on flight fuels serves as a stepping stone to Vector’s first launch of the Vector-R slated for 2017, and moves the company one step closer to its mission of connecting space startups and innovators with affordable, reliable access to space.

They have also signed the land lease for the Tucson site where they plan to build their rocket factory.

Share

Designing a propulsion system for cubesats

The competition heats up: Just like the Chinese tests of a smallsat propulsion system noted in my previous post, this U.S. company is designing a propulsion system for cubesats.

McDevitt’s propulsion system is deceptively simple. It combines rocket-fuel-grade hydrogen peroxide with a patented proprietary catalyst to create a chemical reaction that results in thrust channeled through tiny square nozzles incorporated into the small satellite. The system allows the satellites to be steered or stopped. The only byproduct of McDevitt’s tiny rocket motors is water vapor.

Except for this quote the article doesn’t provide much information about the design, probably because the builders didn’t reveal the details for proprietary reasons. They hope to launch a test satellite by 2018.

Share

Vector Space Systems signs $60 million contract

The competition heats up: Vector Space Systems, which recently began work on a rocket factory in Tucson, today announced the signing of a new $60 million launch contract.

Vector Space Systems, a micro satellite space launch company comprised of new-space industry veterans from SpaceX, Virgin Galactic, McDonnell Douglas and Sea Launch, today finalized an agreement with York Space Systems, an aerospace company specializing in small and medium class spacecraft, to conduct six satellite launches from 2019 through 2022 with the option for 14 additional launches. The first launch through the agreement will also be the inaugural launch of the Vector-H vehicle, which is capable of launching 100 kg into orbit, and will provide an integrated spacecraft to customers through a standardized platform.

York Space Systems will use the launches with Vector Space Systems to place their standardized S-Class satellite platform into orbit for commercial and government customers. York Space Systems’ satellites will also employ the unique Electric Upper Stage which uses Vector Space Systems’ propriety electric propulsion technology as the final insertion stage of the Vector-H to place the satellites into orbital altitudes up to 1000 km with zero loss of launch throw mass capability.

It seems that there are now a lot of competing space races going on in the private aerospace industry. SpaceX and Boeing are racing to launch astronauts to ISS. SpaceX and Blue Origin are racing to reuse rockets. Blue Origin and Virgin Galactic are racing to launch the first suborbital tourists. A handful of private companies are racing to win the Google Lunar X-Prize. Arianespace, ULA, and Russia are racing with SpaceX for big payload launch contracts.

And a new group of small rocket companies are racing to capture a new burgeoning small satellite industry. Based on the most recent reports, it looks to me that Vector Space Systems and Rocket Lab are in the lead, though who will be first remains unclear. Hopefully, both will win by launching successfully and competing against each other.

Share

Aerojet Rocketdyne gets NASA contract for cubesat engine

The competition heats up: Aerojet Rocketdyne has signed a contract with NASA to develop a small thruster engine for use on cubesats.

The MPS-130 green propulsion system will allow CubeSats and SmallSats to increase their capabilities, such as extending mission life, increasing architecture resiliency, maneuvering to higher and lower orbits, and performing complex proximity operations and formation flying. The use of additive manufacturing also reduces the number of parts and amount of time required to fabricate and assemble the modular propulsion system, lowering the cost of small satellites for private and public operators. Under the contract, Aerojet Rocketdyne will deliver a fully-integrated MPS-130 green modular propulsion system for flight demonstration, as well as conduct development and validation testing.

The press release does not say how much money NASA is providing. Regardless, this is a great opportunity for Aerojet Rocketdyne, because the smallsat industry is I think about to take off, and at the moment these tiny satellites lack any useful technology for maneuvering. Up until now they were mostly designed as temporary short term satellites built mostly to teach students. Soon, however, there will be a lot of privately-built commercial smallsats launched, designed to make money. Being able to sell their builders a thruster that could prolong their life and make them more capable will give Aerojet Rocketdyne a product that will certainly sell like hotcakes.

Share

New smallsat company plans 200 satellite constellation

The competition heats up: A new smallsat satellite company, Sky and Space Global, is planning to launch a 200 nanosat communications constellation for less than $160 million.

More important, they have funded and built the first three, which they will launch in 2017:

The company, located in the U.K., Israel and Australia, has fully funded the first three satellites to precede an initial constellation of 200 nanosatellites. Coined the “Three Diamonds,” the nanosatellites are scheduled to launch as a rideshare aboard a Polar Satellite Launch Vehicle (PSLV) from the Indian Space Research Organization (ISRO) in the second quarter of 2017.

The pilot satellites are to determine the final characteristics of Sky and Space Global’s operational satellites, which are scheduled to begin launching in 2018 via Virgin Galactic’s LauncherOne. Sky and Space Global’s goal is to field a constellation that will eventually become global for low cost telecommunications services such as voice, instant messaging and data forwarding.

What this story illustrates is that the smallsat market is about to become a reality, and in doing so it will shake up the entire geosynchronous communications satellite industry, much as SpaceX has shook up the launch industry. As I’ve noted earlier, these new smallsats suggest that the space industry is splitting, with unmanned Earth-orbit satellites going small and manned capabilities staying large.

Share

New smallsat rocket company plans first launch in 2018

The competition heats up: Vector Space Systems now plans its first test flights of its Vector 1 will begin in 2017 with the first orbital flights in 2018.

[Chief executive Jim Cantrell] said he expects to do three or four orbital launches in 2018, increasing to 12 in 2019. “We’re going to call them test launches,” he said of the planned 2018 launches, “but we have a number of people who want to buy those launches already.”

Cantrell said Vector Space Systems has signed up one customer, and is in negotiations with a second customer, both of whom he declined to name. Both customers, he said, are planning satellite constellations. “Between those two, we will have sold close to 30 launches,” he said, with those launches spread out over several years.

Vector 1 is being designed to launch very small satellites weighing generally less than 100 pounds.

Share

Smallsat market to exceed $22 billion

The competition heats up: A new report estimates the market for small satellites will exceed $22 billion in the next decade.

According to Euroconsult’s latest report, Prospects for the Small Satellite Market, we are on the cusp of a major revolution for the space sector and overall space ecosystem, as more than 3,600 smallsats are expected to be launched over the next ten years, a significant increase from the previous decade. The total market value of these satellites is anticipated to be $22 billion (manufacture and launch), a 76% increase over that of 2006-2015. This rate of growth is unprecedented for the space sector and will bring about fundamental changes as both new and established industry players attempt to increase their capabilities in order to gain market share.

What I expect is a splitting of the space industry, with unmanned smallsats launched by smaller rockets on one hand and big spaceships and payloads launched by big rockets on the other hand. In both cases, the competition will likely force prices down, so that more customers will find space affordable.

Share

Smallsat rocket launchers get NASA contracts

The competition heats up: NASA this week awarded contracts ranging from $4.7 to $6.9 million to three different smallsat launch companies.

The companies are Firefly Space Systems, Rocket Lab USA, and Virgin Galactic. The second is the company that just won the contract to put a privately-built lunar rover on the moon (part of the Google Lunar X-Prize).

In the past, cubesats and other small satellites could only afford to be secondary payloads on much larger rockets. Thus, they were at the mercy of the needs of the primary payload, often resulting in significant unplanned delays before launch. This in turn acted to discourage the development of smallsats. Now, with these private launch companies designed to service them exclusively the smallsat industry should start to boom.

Note also the low cost of these contracts. The small size of cubesats and the launchers designed for them means everything about them costs much less. Putting an unmanned probe into space is thus much more affordable.

Share

A list of all smallsat launch rockets

Doug Messier has compiled a very interesting table showing all the known smallsat launch vehicles presently under construction or in operation.

Most of the operational rockets, such as Orbital ATK’s Minotaur, have turned out to be too expensive for their small payloads, and have not been very profitable. The new generation of rockets, however, have the chance of success, as they are all working to reduce the cost significantly. Keep your eye especially on Rocket Labs (which just signed a contract with Moon Express), Swiss Space Systems, Firefly Space Systems, and (dare I say it?) Virgin Galactic.

Share

Smallsat company buys its own Falcon 9 rocket to launch 20 satelites

The competition heats up: Spaceflight Industries has purchased a single dedicated Falcon 9 rocket launch to launch 20 small satellites sometime in 2017.

Buying a dedicated launch, rather that seeking excess capacity on other launches, provides Spaceflight with more than just additional payload capacity. Secondary or “rideshare” payloads are subject to the schedule of the primary capability, and can be bumped off the launch if the mass of the primary payload grows. With a dedicated mission, Spaceflight is in greater control. “It helps us establish a regular cadence of launches,” Blake said. “We can book all kinds of rideshare passengers onto something that is going to be there at a certain time to a certain orbit.”

This purchase also indicates the growing strength of the smallsat industry. These companies are beginning to gain the investment capital to buy their own launches rather than fly as secondary payloads.

Share