ISRO officially requests funds for new lunar lander/rover

The new colonial movement: India’s space agency ISRO has now officially requested funding to build a new lunar lander/rover, dubbed Chandrayaan-3, to launch as early as November 2020.

The TOI [Times of India], which was the first to report that Isro is looking to launch another Moon landing mission as early as next November, has now been able to get a confirmation from the department of economic affairs that the space agency has, in fact, sought Rs 75 crore [approximately $14 million] for Chandrayaan-3.

As per initial plans, Chandrayaan-3 will have a lander, a rover and a detachable propulsion module to carry fuel.

The money has been sought under the provisions of a supplementary budget for the present financial year. Of this, Rs 60 crore will be for “meeting expenditure towards machinery, equipment and other capital expenditure,” while the remaining Rs 15 crore is sought under revenue expenditure head.

The article also notes that ISRO “has already set up multiple committees to work on Chandrayaan-3.”

Two Chinese Kuaizhou-1A launches within six hours

The new colonial movement: China today successfully completed two separate Kuaizhou-1A launches, placing in orbit seven total smallsats and doing it within a space of only six hours.

China launched two orbital missions from the Taiyuan Satellite Launch Center within six hours of each other, orbiting a total of seven satellites. The launches, using mobile pads, saw two Kuaizhou-1A rockets heading into space on Saturday at 2:55 UTC and 8:52 UTC.

The first Kuaizhou-1A rocket, serial number Y2, orbited the Jilin-1 Gaofen-2B remote sensing satellite for the Jilin-1 constellation.

…Six hours after the first launch, and as was expected by the navigational warnings previously published, a second Kuaizhou-1A launch vehicle, serial number Y12, had already been displaced to the launch site, but from a different pad. Analysis of the images available from the second launch seems to indicate that launch took place from a location within the Launch Complex 16 usually used for the Long March-6 launches. Ignition came at 8:52UTC.

The three-stage launch vehicle orbited six satellites.

This achievement is a very big deal. China has demonstrated the ability to launch and then launch again quickly with this military-based mobile launch system. This not only enhances their commercial value, it tells us they have developed a military capability able to put payloads into orbit at almost a moment’s notice.

The leaders in the 2019 launch race:

29 China
19 Russia
12 SpaceX
7 Europe (Arianespace)
6 Rocket Lab

China now leads the U.S. 29 to 25 in the national rankings.

Cloud stream on Jupiter

Cloud stream on Jupiter
Click for full image.

Cool image time! The photo to the right, taken by Juno on November 3, was enhanced by citizen scientist Björn Jónsson to bring out the colors. It shows a band of repeating large storms, with tiny white thunderheads popping up within them.

The dark areas at the edges of the swirls are likely not an aspect of the clouds but shadows created because the white swirls sit higher than the surrounding gases.

Sadly the press release does not give us a scale. The image was taken from a distance of 3,200 miles. I suspect each cloud swirl would likely cover much of the Earth.

Inmarsat bought out and delisted from stock exchange

Capitalism in space: The long established communications satellite company Inmarsat has been bought out by a consortium called Connect Bidco and delisted from stock exchange.

Nor is Inmarsat alone:

Inmarsat is the third satellite operator to delist from public markets this year, following Hong Kong-based AsiaSat and London-based Avanti in September.

Inmarsat reported a loss of $89.1 million on $1.06 billion in revenue for the first nine months of the year. The company claimed $36.1 million in profits on $327.3 million in revenue for the months of July, August and September — it’s last public quarter before the buyout.

This story and the quote above explain what is happening. Established satellite companies, that traditionally have built big geosynchronous satellites, are having increased trouble making money as the industry shifts to smaller satellite and constellations in low Earth orbit.

Successful Russia and Rocket Lab launches

Two launches successfully took place in the early morning hours today. First Rocket Lab launched seven small satellites into orbit, including one that will release an artificial meteor shower. During that launch they also obtained telemetry of their first stage as it fell to Earth.

Rocket Lab CEO Peter Beck just tweeted that the Electron’s first stage performed well during today’s re-entry experiment. “Electron made it through wall! Solid telemetry all the way to sea level with a healthy stage. A massive step for recovery!!” Beck tweeted.

Russia in turn launched a Progress cargo capsule to ISS.

The leaders in the 2019 launch race:

27 China
19 Russia
12 SpaceX
7 Europe (Arianespace)
6 Rocket Lab

China now leads the U.S. 27 to 25 in the national rankings.

Lloyd’s introduces new insurance policy for smallsats

Capitalism in space: The insurance company Lloyd’s today introduced a new insurance policy expressly designed for the emerging smallsat launch industry.

The solution – called “Llift Space” – is only available in the Lloyd’s market and allows customers to cover their assets from the pre-launch phase, including transit and placement on the launch vehicle, through to the launch phase and in-orbit operation. It is designed for satellites that weigh less than 300 kilograms (661.4 pounds).

The policy is modular so customers can choose the elements within each phase that are most relevant to their coverage needs.

The product is backed by a consortium of 18 syndicates, led by Brit and Hiscox MGA, with $25 million capacity per risk, and is targeted at the NewSpace sector.

NewSpace is characterized by lower cost, easier routes to space, opening up the sector to private enterprise, wealthy entrepreneurs and innovative start-ups. This is increasing the need for space insurance.

This action is a strong endorsement by the investment business in the future of the new smallsat launch industry.

SpaceX targets December for launch abort test, early 2020 for 1st manned Dragon mission

According to SpaceX officials, the company is aiming to perform its Dragon launch abort test before the end of this month, and then follow-up with the first manned Dragon mission to ISS in early 2020.

“We’re targeting December,” said [Jessica Jensen, director of Dragon Mission Management at SpaceX] today (Dec. 3) during a news conference discussing tomorrow’s (Dec. 4) planned launch of a robotic Dragon cargo mission to the International Space Station (ISS). “We’ll see if we can get there.”

SpaceX holds a multibillion-dollar NASA contract to ferry astronauts to and from the ISS using Crew Dragon and the Falcon 9. The capsule has already visited the orbiting lab once, on the landmark uncrewed Demo-1 mission this past March. If everything goes well with the [launch abort test], the company will be cleared for the first crewed mission — a test flight known as Demo-2 that will carry NASA astronauts Doug Hurley and Bob Behnken.

Demo-2 is targeted for early 2020, SpaceX founder and CEO Elon Musk has said. Contracted, operational ISS flights would follow shortly thereafter.

NASA officials have repeatedly said that early 2020 is too soon because of the paperwork that SpaceX has to complete prior to launch. It could be that Musk is gently applying pressure on them here to speed up this make-work so that the real business of spaceflight can proceed.

OSIRIS-REx completes reconnaissance of four candidate sample sites

Four candidate landing sites
Click for full image.

OSIRIS-REx has completed its high resolution reconnaissance of the four candidate sites on the asteroid Bennu, chosen for possible sample capture during touch-and-go operations planned for the summer of 2020.

In the next few days the science team will decide which of these four sites, shown above, will be the primary and back-up landing locations. The decision however appears challenging, based on the information gathered.

Bennu has also made it a challenge for the mission to identify a site that won’t trigger the spacecraft’s safety mechanisms. During Recon A, the team began cataloguing Bennu’s surface features to create maps for the Natural Feature Tracking (NFT) autonomous navigation system. During the sample collection event, the spacecraft will use NFT to navigate to the asteroid’s surface by comparing the onboard image catalog to the navigation images it will take during descent. In response to Bennu’s extremely rocky surface, the NFT system has been augmented with a new safety feature, which instructs it to wave-off the sampling attempt and back away if it determines the point of contact is near a potentially hazardous surface feature. With Bennu’s building-sized boulders and small target sites, the team realizes that there is a possibility that the spacecraft will wave-off the first time it descends to collect a sample.

Based on the information at the link, plus the presentation by Dante Lauretta, OSIRIS-REx’s principal investigator, given at the asteroid conference I attended in November, I suspect that Nightingale will be primary landing site.

Regardless, it appears the science team has recognized that the landing will difficult, and will likely require multiple attempts before the spacecraft’s navigation system lets it happen.

First results from Parker released

Scientists today published four papers outlining the first scientific results obtained during the first two close fly-bys of the Sun by the Parker Solar Probe.

The four papers, now available online from the journal Nature, describe Parker’s unprecedented near-Sun observations through two record-breaking close flybys. They reveal new insights into the processes that drive the solar wind – the constant outflow of hot, ionized gas that streams outward from the Sun and fills up the solar system – and how the solar wind couples with solar rotation. Through these flybys, the mission also has examined the dust of the coronal environment, and spotted particle acceleration events so small that they are undetectable from Earth, which is nearly 93 million miles from the Sun.

During its initial flybys, Parker studied the Sun from a distance of about 15 million miles. That is already closer to the Sun than Mercury, but the spacecraft will get even closer in the future, as it travels at more than 213,000 mph, faster than any previous spacecraft.

Details about the four main takeaways are described at the link. None of the discoveries is earth-shaking but all help scientists better understand the Sun’s inner atmosphere.

SpaceX to test upper stage endurance as part of Dragon launch

Capitalism in space: SpaceX plans to perform a six hour orbital coast test of its Falcon 9 upper stage following the release of the Dragon cargo capsule tomorrow (scrubbed today due to high winds).

This is why the first stage will land on a drone ship rather than at Kennedy.

According to SpaceX the test is at the request of “other customers”, unnamed. The article adds this speculation:

Jensen says that the coast test will be performed for unspecified “other” customers, presumably referring to the US Air Force (USAF) and other commercial customers interested in direct-to-geostationary (GEO) launch services. Direct GEO launches require rocket upper stages to perform extremely long coasts in orbit, all while fighting the hostile vacuum environment’s temperature swings and radiation belts and attempting to prevent cryogenic propellant from boiling off or freezing solid. In simple terms, it’s incredibly difficult to build a reliable, high-performance upper stage capable of remaining fully functional after 6-12+ hours in orbit.

Although SpaceX said that the test was for “other” customers, that may well have been a cryptic way to avoid indicating that one such customer might be NASA itself. NASA is in the midst of a political battle for the Europa Clipper spacecraft’s launch contract, which is currently legally obligated to launch on NASA’s SLS rocket. Said rocket will likely cost on the order of >$2 billion per launch, meaning that simply using Falcon Heavy or Delta IV Heavy could save no less than ~$1.5 billion. Incredibly, that means that simply using a commercial launch vehicle could save NASA enough money to fund an entire Curiosity-sized Mars rover or even a majority of the cost of building a dedicated Europa lander. Such a launch would demand every ounce of Falcon Heavy’s performance, including a very long orbital coast.

These speculations could all be true. SpaceX might merely be doing what it always does, testing new engineering upgrades during operational missions. It will then be able to sell its rocket’s enhanced capability to all these customers.

China to launch 30 times in 2020

The new colonial movement: According to Chinese officials, China plans to launch 30 times in 2020, maintaining the same pace that they met in 2019.

Zhuang Jingguo, chief engineer of the China Aerospace Science and Technology Corporation (CASC), the country’s man space contractor, told media at the Fifth China International Commercial Aerospace Forum late last month that the state-owned enterprise will launch around 30 rockets next year.

This number is expected to include missions to Mars, the moon, test flights of new launch vehicles, and the completion of the Beidou navigation system. Commercial launch companies will further add to Chinese launch activities.

The article also provides a good overall summary of China’s present space effort, which is extensive and growing.

Chang’e-4 and Yutu-2 complete 12th lunar day

Chinese engineers have put both Chang’e-4 and Yutu-2 into dormant mode after completed their twelve lunar day on the far side of the Moon.

The article from the Chinese state-run press provides very little information, other than telling us that Yutu-2 traveled 345 meters, written in a way to imply that was the distance the rover traveled in this last lunar day. I think that is wrong, however. Based on the distances traversed during previous lunar days, and that the rover had traveled a total of 290 meters at the end of its tenth lunar day, I think this new number is the total distance traveled.

The article also does not say what the consequences will be for these two spacecraft now that the priority of their communications relay has shifted from communications to being a radio telescope.

It could be that the consequences will be minor, considering that both spacecraft are in sleep mode during the lunar nights and for high noon of the lunar day. During those periods the relay satellite could be devoted full time to radio astronomy and have no impact on the lander and rover.

Unfortunately China has not said.

TESS captures outburst from comet

Wirtanen outburst

The space telescope TESS, designed to look for exoplanets by imaging one hemisphere of the sky repeatedly over a full year, also successfully captured in those images the full outburst from the comet 46P/Wirtanen that occurred on September 26, 2018.

The animation created from those images is to the right.

According to Farnham, the TESS observations of comet Wirtanen were the first to capture all phases of a natural comet outburst, from beginning to end. He noted that three other previous observations came close to recording the beginning of an outburst event. Observations of a 2007 outburst from comet 17P/Holmes began late, missing several hours of the initial brightening phase of the event. In 2017, observations of an outburst from comet 29P/Schwassmann-Wachmann 1 (SW1) concluded early, due to limitations on pre-scheduled observation time. And, while observations from the UMD-led Deep Impact mission captured an outburst from comet Tempel 1 in unprecedented detail in 2005, the outburst was not natural—created instead by the mission’s impactor module. However, the current observations are the first to capture the dissipation phase in its entirety, Farnham said.

Although Wirtanen came closest to Earth on December 16, 2018, the outburst occurred earlier in its approach, beginning on September 26, 2018. The initial brightening of the outburst occurred in two distinct phases, with an hour-long flash followed by a more gradual second stage that continued to grow brighter for another 8 hours. This second stage was likely caused by the gradual spreading of comet dust from the outburst, which causes the dust cloud to reflect more sunlight overall. After reaching peak brightness, the comet faded gradually over a period of more than two weeks. Because TESS takes detailed, composite images every 30 minutes, the team was able to view each phase in exquisite detail.

The data from TESS is likely going to overwhelm the astronomy community for years.

A crack in the Martian crust

Crack in the Martian crust
Click for full image.

Cerberus Fossae

The photograph to the right, reduced and cropped to post here, was imaged on October 20, 2019 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a spectacular thousand-foot-deep canyon in the region of Cerberus Fossae, an area of Mars crossed by numerous deep east-west fissures and depressions.

Hidden in the small white box on the eastern end of that canyon are Martian geological features, small and at first glance not that interesting, that are of great significance and the focus of intense research.

The map to the right shows an overview of the region. The yellow cross shows the location of this particular crack.

In my previous post about Cerberus Fossae, I had incorrectly assumed that these cracks and similar lines of pits or depressions were caused by the sinking of surface material into underground lava tubes. While this is possible in some cases, it is not the main cause of these cracks. Instead, they were formed due to the pressure from below caused by the rise of the surrounding giant volcanoes, Elysium Mons to the north and Olympus Mons to the east. That pressure stretched the crust until it cracked in numerous places. In Cerberus Fossae this produced a series of parallel east-west fissures, some more than seven hundred miles long.

The young age of Cerberus Fossae is dramatically illustrated by the wider mosaic below, showing the entire crack.
» Read more

Long March-8 2nd stage engine passes engine test

The new colonial movement: The second stage engine for China’s new Long March-8 rocket has successfully passed its engine tests.

Developed by the CASC [China Aerospace Science and Technology Corporation, China’s equivalent to NASA], the Long March-8 rocket is a new type of rocket that uses module design and can be prepared in a short time, making it competitive for commercial launch.

The first stage of the Long March-8 rocket is similar to that of the Long March-7 rocket and the second stage rocket is similar to the third stage of the Long March-3A rocket. It has a payload capacity of 5 tonnes to sun-synchronous orbit and 2.8 tonnes to geostationary transfer orbit.

This payload capacity is about a fourth that of the Falcon 9, but because the weight and size of satellites is shrinking, that smaller capacity might actually be an advantage. There is less need for the larger rockets in the commercial unmanned satellite industry, so for China to build a new smaller rocket that can be launched for less, even though it is not reusable, gives them a route for competing with SpaceX’s reuseability.

They hope to launch 10 to 20 times per year, beginning next year.

Hayabusa-2 fires main ion engines for return to Earth

After spending two weeks testing its main ion engines just beyond the gravitational sphere of influence of the asteroid Ryugu, Japanese engineers today initiated full engine operation, beginning the spacecraft’s journey back to Earth.

Hayabusa-2 is expected to return to Earth space in December 2020, where it will release a small capsule containing the two samples it obtained of Ryugu will be released to land on Earth and be recovered. At that point, if Hayabusa-2 is still in good condition it will be available to send to other locations in the solar system.

Crash site of Vikram found

Vikram impact point
Click for full image.

Using a mosaic of Lunar Reconnaissance Orbiter (LRO) images, citizen scientist Shanmuga Subramanian located on the Moon the debris and impact point for India’s Vikram lander that crashed there in September, an identification that has since been confirmed by LRO scientists.

The image on the right, reduced to post here, has been modified by the scientists to bring out the features that changed before and after the impact.

After receiving this tip the LROC team confirmed the identification by comparing before and after images. When the images for the first mosaic were acquired the impact point was poorly illuminated and thus not easily identifiable. Two subsequent image sequences were acquired on 14, 15 October and 11 November. The LROC team scoured the surrounding area in these new mosaics and found the impact site (70.8810°S, 22.7840°E, 834 m elevation) and associated debris field. The November mosaic had the best pixel scale (0.7 meter) and lighting conditions (72° incidence angle).

The debris first located by Shanmuga is about 750 meters northwest of the main crash site and was a single bright pixel identification in that first mosaic (1.3 meter pixels, 84° incidence angle). The November mosaic shows best the impact crater, ray and extensive debris field. The three largest pieces of debris are each about 2×2 pixels and cast a one pixel shadow.

No word yet on what this new information reveals about Vikram’s failure.

Martian “What the heck?” formations

What the heck caused these?
Click for full image.

Cool image time! In digging through the new images that come down from the high resolution camera on Mars Reconnaissance Orbiter (MRO), my reaction sometimes is “What the heck caused that?”

That was my reaction when I looked at the image to the right, cropped to post here.

The full image, taken on October 6, 2019, shows the floor of one of the many north-south fissures found in the volcanic Tharsis Bulge west of Valles Marineris and east of Olympus Mons. The fissures are caused when the crust is pushed upward by volcanic pressure, causing the surface to crack.

In this case the mystery is that patch of east-west ridges at the bottom of this somewhat wide fissure. While they might be dunes, they do not resemble dunes, as they have a rigid and somewhat sharp appearance. More puzzling is their somewhat abrupt appearance and disappearance. Except for its northern end, the edges of the patch are so sharply defined. If these were dunes you’d think they’d fade away more gradually.

Could the ridges be a more resistant subsurface feature slowly being revealed as surface material erodes away? Sure, but their orientation is completely opposite to the north-south fissures that dominate this region. One would expect deeper features to reflect that same general orientation. These ridges do not.

This image was dubbed a “Terrain Sample,” which means it was taken not because of any specific research goal, but because the scientists who run MRO’s high resolution camera had a gap in their schedule and needed to take a picture to maintain the camera’s proper temperature. In such cases they often take somewhat random images, not knowing what they will find. In this case they struck geological gold, a mystery that some postdoc student could spend a lot of time analyzing.

New Horizons confirms solar wind slows at greater solar distances

The New Horizons science team today released data that confirms that, as theorized, the speed of the solar wind decreases as it travels farther from the Sun.

As the solar wind moves farther from the Sun, it encounters an increasing amount of material from interstellar space. When interstellar material is ionized, the solar wind picks up the material and, researchers theorized, slows and heats in response. SWAP [an instrument on New Horizons] has now detected and confirmed this predicted effect.

The SWAP team compared the New Horizons solar wind speed measurements from 21 to 42 astronomical units to the speeds at 1 AU from both the Advanced Composition Explorer (ACE) and Solar TErrestrial RElations Observatory (STEREO) spacecraft. (One AU is equal to the distance between the Sun and Earth.) By 21 AU, it appeared that SWAP could be detecting the slowing of the solar wind in response to picking up interstellar material. However, when New Horizons traveled beyond Pluto, between 33 and 42 AU, the solar wind measured 6-7% slower than at the 1 AU distance, confirming the effect.

The data also suggests that New Horizons could exit the heliosphere and enter interstellar space as early as sometime in the 2020s.

Big budget boost for ESA

The European Space Agency (ESA) received its largest budget increase ever, 20%, from its 22 member nations at a high level meeting yesterday.

The meeting also included commitments to remain a partner in ISS to 2030 and increase participation in Lunar Gateway. From the press release:

With worldwide partners, Europe will take its place at the heart of space exploration going farther than we have ever gone before – we continue our commitment to the International Space Station until 2030 as well as contributing vital transportation and habitation modules for the Gateway, the first space station to orbit the Moon. ESA’s astronauts recruited in 2009 will continue to receive flight assignments until all of them have been to space for a second time, and we will also begin the process of recruiting a new class to continue European exploration in low Earth orbit and beyond. European astronauts will fly to the Moon for the first time. Member States have confirmed European support for a ground-breaking Mars Sample Return mission, in cooperation with NASA.

ESA will help develop the commercial benefits of space for innovators and governments across the Member States, boosting competitiveness in the NewSpace environment. We will develop the first fully flexible satellite systems to be integrated with 5G networks, as well as next-generation optical technology for a fibre-like ‘network in the sky’, marking a transformation in the satellite communication industry. Satellite communications will join forces with navigation to begin satnav for the Moon, while closer to home commercial companies can access funding for new applications of navigation technologies through the NAVISP programme. ESA Ministers have secured a smooth transition to the next generation of launchers: Ariane 6 and Vega-C, and have given the green light to Space Rider, ESA’s new reusable spaceship.

Isn’t competition wonderful? ESA’s budget has been stagnant for years. Then SpaceX comes along and threatens its commercial market share while generating a new political will in the U.S. to renew its own space effort, and suddenly the European nations that make up ESA decide they need to do the same.

Much of the proposed program for ESA is very likely to happen, especially the commitments to a variety of astronomical and planetary missions. The agency’s commercial effort is also likely to happen, but whether it can happen fast enough to be competitive is questionable. As a government agency ESA’s track record in its effort to compete in the launch market has not been impressive. It took them far too long to accept the idea of reuseable rockets or the need to cut their costs drastically.

China launches Earth resource satellite

Using its Long March 4C rocket China yesterday successfully launched Gaofen-12, a remote sensing satellite designd to study Earth resources.

The leaders in the 2019 launch race:

27 China
18 Russia
11 SpaceX
7 Europe (Arianespace)

China now leads the U.S. 27 to 23 in the national rankings.

The launch schedule remains very busy, with a Rocket Lab launch set for early tomorrow and two launches to ISS (a Dragon and Progress) scheduled next week. In fact, seventeen launches are tentatively listed for launch in December, which would be once every other day. Several are unlikely, but regardless December will be a very busy month in the launch industry.

Further explorations at candidate Starship Mars landing site

Beginning of Possible Glacial Unit near candidate Starship landing sites
Click for full image.

Close-up on exposed lower layer

Cool image time! Even though it appears that SpaceX has completed its first round of images of its candidate landing sites surrounding the Erebus Montes mountains in the Arcadia Planitia plains in the Martian northern lowlands, this does not mean that other planetary scientists are not asking for more images of this region, for their own scientific research.

The photograph on the right, cropped and reduced to post here, was released in the early November image download from the high resolution camera of Mars Reconnaissance Orbiter (MRO). Uncaptioned but dubbed “Beginning of Possible Glacial Unit,” it shows what appears at first glance to be a relatively featureless area south of Erebus Montes, out in the flat plains.

A closer look suggests otherwise. For one, the full image shows darker and lighter areas. The close-up to the right, its location indicated by the white box in the wider image above, also shows several intriguing depressions that appear to be revealing a knobby lower layer. In fact, in the full image it appears that the darker areas are areas where material has covered that knobby lower layer. Where it is bright the ground resembles the floors of these depressions, knobby and complex.

I do not know why they label this the “beginning” of a glacial unit. What I do know is that the research of this region has consistently found evidence of a lot of buried ice. To quote Donna Viola of the University of Arizona noted, “I think you could dig anywhere to get your water ice.” The knobby features to me suggest a surface that is showing signs of sublimation, where the exposed ice is slowly eroding. Think of what happens to a block of ice when you spray warm water on it. As it melts it leaves behind just these kinds of strange formations.

Overview of all MRO images at Starship candidate landing site

The red box in the map on the right shows the location of this photograph relative to the other images taken for SpaceX. The white boxes are the company’s images taken for Starship. The black boxes are the images it obtained in 2017 when it was thinking of sending a Dragon capsule to Mars.

This map does not show all images taken by MRO’s high resolution camera in this area, but the coverage is very scattered, with many gaps. Over time I suspect these gaps will be filled more quickly than other northern plain regions, because the scientists know that SpaceX has an interest in this area. That interest means there is an increased chance that a mission will fly here in the relatively near future, which in turn is going to generate more scientific interest as well.

China unfolds Dutch radio antennas on lunar relay satellite

Chinese engineers have unfolded and activated the Dutch radio antennas on Queqiao, their lunar relay satellite orbiting the Moon, an action that had been delayed because the lander Chang’e-4 and rover Yutu-2 had both exceeded their nominal mission on the surface.

The Chinese satellite was previously mainly seen as a communications satellite. However, the Chinese moon mission has by now achieved its primary goals. Consequently, the Chinese have redefined the satellite to be a radio observatory. As such, the Netherlands-China Low Frequency Explorer is the first Dutch-Chinese space observatory for radio astronomy.

Marc Klein Wolt, Managing Director of the Radboud Radio Lab and leader of the Dutch team, is happy: “Our contribution to the Chinese Chang’e 4 mission has now increased tremendously. We have the opportunity to perform our observations during the fourteen-day-long night behind the moon, which is much longer than was originally the idea. The moon night is ours, now.”

If Queqiao is now dedicated to being a radio antenna full time during the lunar night, I wonder if this means the Chinese are shutting down Chang’e-4 and Yutu-2. Up to now both spacecraft have only operated during the lunar night, which suggests that was the only time they could relay data. It is possible that data relay could take place at other times, and that the lander and rover can function autonomously, but I have my doubts.

Both Chang’e-4 and Yutu-2 functioned for twelve lunar nights, four times longer than planned, so shifting gears on Queqiao to do radio astronomy is not unreasonable. Unfortunately, the lack of transparency from China leaves us in the dark about the fate of Chang’e-4 and Yutu-2.

Does zero gravity cause intestinal issues?

The uncertainties of science: New research simulating microgravity on Earth now suggests that zero gravity might weaken the walls of the intestines.

The barrier function of the intestinal epithelium, he added, is critical for maintaining a healthy intestine; when disrupted, it can lead to increased permeability or leakiness. This, in turn, can greatly increase the risk of infections and chronic inflammatory conditions such as inflammatory bowel disease, celiac disease, Type 1 diabetes, and liver disease.

McCole’s team used a rotating wall vessel — a bioreactor that maintains cells in a controlled rotation environment that simulates near weightlessness — to examine the impact of simulated microgravity on cultured intestinal epithelial cells.

Following culture for 18 days in the vessel, the team discovered intestinal epithelial cells showed delayed formation of “tight junctions,” which are junctions that connect individual epithelial cells and are necessary for maintaining impermeability. The rotating wall vessel also produces an altered pattern of tight junction assembly that is retained up to 14 days after the intestinal epithelial cells were removed from the vessel.

This is good research, but it has not proved anything, merely indicated an area of research that needs a follow-up in space. I also wonder if there has been any evidence of this phenomenon from astronauts returning from long missions. As far as I know, intestinal issues have never been mentioned as a problem post flight.

Climate change protesters mob local UK spaceport council

Mob rule: A local Cornwall council meeting yesterday approved a $10 million grant for a new spaceport despite protesters screaming and yelling in the gallery and outside, forcing the meeting to end early.

After deciding not to defer a decision, councillors voted to grant £10.32m of capital funding to the spaceport by 66 to 34, with one abstention.

The gallery then erupted with chants as protesters launched paper airplanes. The chamber was then cleared of councillors and the meeting adjourned as the crowds continued to chant and shouted at councillors as they left saying things like “shame on you”. [emphasis mine]

Police were required to maintain order.

I have highlighted the vote count to note that these protesters clearly did not have that much real support. Their protests however remain a good intimidation tactic, so expect more protests if this project continues, especially because it appears the climate change crowd is beginning to behave as if any new technology is a threat. From the article it appears the protests were dominated by global warming activists from the group Extinction Rebellion. Also, “the groups Red Rebels and deathly-looking Penitents were joined by locals carrying signs and flags.”

I grant that it might not make sense for this local council to spend so much money for a spaceport, especially because they are doing it mostly for Richard Branson’s Virgin Galactic. They are likely to find the money wasted.

The protests however are mindless and an act of bullying, and are not the way to debate this or any subject sanely.

More Martian pits, filled and unfilled!

Pit in Ceraunius Fossae
Click for full image.

Overview of Ceraunius Fossae

Time for what has almost become a monthly pit report from Mars Reconnaissance Orbiter (MRO). The November image download from the spacecraft’s high resolution camera included two pit-related photographs, both very different. To the right is the first, cropped to focus on the pit and the immediate surrounding terrain. Below that is a wider overview map to provide the context.

This pit’s location is indicated by the white box at the southern end of a region dubbed Ceraunius Fossae, made of hundreds and hundreds of parallel north-south fissures extending more than seven hundred miles south of the giant volcano Alba Mons and caused when the ground was stretched from below, causing it to crack.

This surrounding terrain helps to explain the pit’s origin. First it is located in a north-south depression with a number of other less pronounced depressions. While these do not line up precisely, they still suggest that they are sinkholes where the surface material is draining downward into voids below. Normally the assumption would be the existence of a lava tube, but here the downward grade is very small. Instead, what is likely happening is that the ground is being stretched, causing cracks to form into which surface material slips downward.

The Ceraunius Fossae fractures are extensional features produced when the crust is stretched apart…. Mechanical studies indicate that a regional pattern of radiating graben and rifts is consistent with stresses caused by loading of the lithosphere by the enormous weight of the Tharsis bulge….Several generations of grabens with slightly different orientations are present in Ceraunius Fossae, indicating that stress fields have changed somewhat over time.

In addition to producing normal faults and graben, extensional stresses can produce dilatant fractures or tension cracks that can open up subsurface voids. When surface material slides into the void, a pit crater may form. Pit craters are distinguishable from impact craters in lacking raised rims and surrounding ejecta blankets. On Mars, individual pit craters can coalesce to form crater chains (catenae) or troughs with scalloped edges.

That’s what we see here. The pit is suggestive of a void below, but it is likely not going to be a long coherent underground passage but a serious of random gaps, aligned roughly along the larger crack and producing the various depressions on the surface.

Today’s second pit is of an entire different nature.
» Read more

1 189 190 191 192 193 434