Astronomers have detected water vapor spurting from Ceres, the solar system’s largest asteroid.

Using the Herschel Space Telescope astronomers have detected water vapor spurting from Ceres, the solar system’s largest asteroid.

Herschel’s sensors spied plumes during three of the four observation periods. The strength of absorption varied over a matter of hours, a trend probably caused by relatively small sources of water vapour rotating in and out of view of Earth, the researchers say.

Data gathered in March 2013 suggest that the plumes originated from two widely separated, 60-kilometre-wide spots in the dwarf planet’s mid-latitude regions. Together, these spots ejected about 6 kilograms of water vapour into space each second. Neither ground-based observations nor images from the Hubble Space Telescope are keen enough to identify the as-yet-mysterious areas, says Küppers. “We don’t know what these features are, we just know that they’re darker than their surroundings,” he notes.

The NASA probe Dawn will arrive at Ceres early next year, and take a good look at these plumes. Should be exciting.

Mars atmosphere has more water vapor than predicted

Data from Mars Express has found that the Martian upper atmosphere has far more water vapor than predicted.

“The vertical distribution of water vapour is a key factor in the study of Mars’ hydrological cycle, and the old paradigm that it is mainly controlled by saturation physics now needs to be revised,” said Luca Maltagliati [of the Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) in Guyancourt, France]. “Our finding has major implications for understanding the planet’s global climate and the transport of water from one hemisphere to the other.”

“The data suggest that much more water vapour is being carried high enough in the atmosphere to be affected by photodissociation,” added Franck Montmessin, also from LATMOS, who is the Principal Investigator for SPICAM and a co-author of the paper. “Solar radiation can split the water molecules into oxygen and hydrogen atoms, which can then escape into space. This has implications for the rate at which water has been lost from the planet and for the long-term evolution of the Martian surface and atmosphere.”