Sierra Space successfully tests equipment for extracting oxygen from the lunar soil
In a press release this week Sierra Space revealed that it has successfully tested an extraction system that can gather up the abrasive lunar regolith and then heat it to high temperatures in order to extract and use the oxygen contained in that soil.
Temperatures in which the Sierra Space Carbothermal Oxygen Production Reactor were tested ranged from minus 45 degrees Celsius to 1,800 degrees Celsius. In addition to the challenges of functioning from sub-zero to hotter-than-lava temperatures, the hardware was required to move the simulated lunar regolith – a very abrasive and jagged material because it does not have the weathering processes found on Earth – through its system. The potentially damaging particles were handled effectively by the hardware and gasses were successfully sealed inside the reactor, thanks to Sierra Space’s use of a patent-pending valve design that previously demonstrated functionality to greater than 10,000 cycles.
The tests confirmed that Sierra Space’s system can successfully handle regolith that would be delivered from a lunar rover or robotic arm and automatically bring it into the reaction chamber, perform the carbothermal reduction reaction process to extract the oxygen from the minerals in the regolith, and remove the processed regolith from the system so the operation can be repeated.
This research is similar to the extraction system the Chinese are developing, though it appears Sierra’s system appears considerably closer to a finished product, as it is already being tested.
In a press release this week Sierra Space revealed that it has successfully tested an extraction system that can gather up the abrasive lunar regolith and then heat it to high temperatures in order to extract and use the oxygen contained in that soil.
Temperatures in which the Sierra Space Carbothermal Oxygen Production Reactor were tested ranged from minus 45 degrees Celsius to 1,800 degrees Celsius. In addition to the challenges of functioning from sub-zero to hotter-than-lava temperatures, the hardware was required to move the simulated lunar regolith – a very abrasive and jagged material because it does not have the weathering processes found on Earth – through its system. The potentially damaging particles were handled effectively by the hardware and gasses were successfully sealed inside the reactor, thanks to Sierra Space’s use of a patent-pending valve design that previously demonstrated functionality to greater than 10,000 cycles.
The tests confirmed that Sierra Space’s system can successfully handle regolith that would be delivered from a lunar rover or robotic arm and automatically bring it into the reaction chamber, perform the carbothermal reduction reaction process to extract the oxygen from the minerals in the regolith, and remove the processed regolith from the system so the operation can be repeated.
This research is similar to the extraction system the Chinese are developing, though it appears Sierra’s system appears considerably closer to a finished product, as it is already being tested.