Astronomers discover pulsar with slowest rotation rate of any known neutron star
The uncertainty of science: Using the MeerKAT radio telescope in South Africa, astronomers have discovered a pulsar with the slowest rotation rate of any known neutron star, completing each rotation every 76 seconds.
According to the press release:
Neutron stars are extremely dense remnants of supernova explosions of massive stars. Scientists know of about 3,000 of these in our Galaxy. However, the new discovery is unlike anything seen so far. The team think it could belong to the theorised class of ultra-long period magnetars – stars with extremely strong magnetic fields.
From the paper’s abstract:
With a spin period of 75.88 s, a characteristic age of 5.3 Myr and a narrow pulse duty cycle, it is uncertain how its radio emission is generated and challenges our current understanding of how these systems evolve. The radio emission has unique spectro-temporal properties, such as quasi-periodicity and partial nulling, that provide important clues to the emission mechanism. Detecting similar sources is observationally challenging, which implies a larger undetected population. Our discovery establishes the existence of ultra-long-period neutron stars, suggesting a possible connection to the evolution of highly magnetized neutron stars, ultra-long-period magnetars and fast radio bursts.
Essentially, a pulsar with this length rotation was not expected, and its existence throws a wrench into present theories about their formation and evolution. That its existence might provide a link between neutron stars, magnetars, and the as-yet unexplained fast radio bursts, however, is very intriguing.
The uncertainty of science: Using the MeerKAT radio telescope in South Africa, astronomers have discovered a pulsar with the slowest rotation rate of any known neutron star, completing each rotation every 76 seconds.
According to the press release:
Neutron stars are extremely dense remnants of supernova explosions of massive stars. Scientists know of about 3,000 of these in our Galaxy. However, the new discovery is unlike anything seen so far. The team think it could belong to the theorised class of ultra-long period magnetars – stars with extremely strong magnetic fields.
From the paper’s abstract:
With a spin period of 75.88 s, a characteristic age of 5.3 Myr and a narrow pulse duty cycle, it is uncertain how its radio emission is generated and challenges our current understanding of how these systems evolve. The radio emission has unique spectro-temporal properties, such as quasi-periodicity and partial nulling, that provide important clues to the emission mechanism. Detecting similar sources is observationally challenging, which implies a larger undetected population. Our discovery establishes the existence of ultra-long-period neutron stars, suggesting a possible connection to the evolution of highly magnetized neutron stars, ultra-long-period magnetars and fast radio bursts.
Essentially, a pulsar with this length rotation was not expected, and its existence throws a wrench into present theories about their formation and evolution. That its existence might provide a link between neutron stars, magnetars, and the as-yet unexplained fast radio bursts, however, is very intriguing.