Philae’s bouncing, tumbling landing sequence
Scientists and engineers have pieced together the bouncing and tumbling land sequence that Philae went through before it came to rest on Comet 67P/C-G, including the possibility that the second touch down was actually the spacecraft grazing a crater rim.
After the first touchdown, the spin rate started increasing. As the lander bounced off the surface, the control electronics of the flywheel were turned off and during the following 40 minutes of flight, the flywheel transferred its angular momentum to Philae. After this time, the lander was now spinning at a rate of about 1 rotation per 13 seconds;
At 16:20 GMT spacecraft time the lander is thought to have collided with a surface feature, a crater rim, for example. “It was not a touchdown like the first one, because there was no signature of a vertical deceleration due to a slight dipping of our magnetometer boom as measured during the first and also the final touchdown,” says Hans-Ulrich. “We think that Philae probably touched a surface with one leg only – perhaps grazing a crater rim – and after that the lander was tumbling. We did not see a simple rotation about the lander’s z-axis anymore, it was a much more complex motion with a strong signal in the magnetic field measurement.”
Following this event, the main rotation period had decreased slightly to 1 rotation per 24 seconds. At 17:25:26 GMT Philae touched the surface again, initially with just one foot but then all three, giving the characteristic touchdown signal. At 17:31:17 GMT, after travelling probably a few more metres, Philae found its final parking position on three feet.
The search for the spacecraft itself, sitting on the surface, continues.
Scientists and engineers have pieced together the bouncing and tumbling land sequence that Philae went through before it came to rest on Comet 67P/C-G, including the possibility that the second touch down was actually the spacecraft grazing a crater rim.
After the first touchdown, the spin rate started increasing. As the lander bounced off the surface, the control electronics of the flywheel were turned off and during the following 40 minutes of flight, the flywheel transferred its angular momentum to Philae. After this time, the lander was now spinning at a rate of about 1 rotation per 13 seconds;
At 16:20 GMT spacecraft time the lander is thought to have collided with a surface feature, a crater rim, for example. “It was not a touchdown like the first one, because there was no signature of a vertical deceleration due to a slight dipping of our magnetometer boom as measured during the first and also the final touchdown,” says Hans-Ulrich. “We think that Philae probably touched a surface with one leg only – perhaps grazing a crater rim – and after that the lander was tumbling. We did not see a simple rotation about the lander’s z-axis anymore, it was a much more complex motion with a strong signal in the magnetic field measurement.”
Following this event, the main rotation period had decreased slightly to 1 rotation per 24 seconds. At 17:25:26 GMT Philae touched the surface again, initially with just one foot but then all three, giving the characteristic touchdown signal. At 17:31:17 GMT, after travelling probably a few more metres, Philae found its final parking position on three feet.
The search for the spacecraft itself, sitting on the surface, continues.