Tiny grains from the interior ocean of Enceladus
Using Cassini scientists have detected tiny grains of rock orbiting Saturn that they think were formed on the floor of the interior ocean of Enceladus and then spewed out its vents into space.
They believe that these silicon-rich grains originate on the seafloor of Enceladus, where hydrothermal processes are at work. On the seafloor, hot water at a temperature of at least 90 degrees Celsius dissolves minerals from the moon’s rocky interior. The origin of this energy is not well understood, but likely includes a combination of tidal heating as Enceladus orbits Saturn, radioactive decay in the core and chemical reactions.
As the hot water travels upward, it comes into contact with cooler water, causing the minerals to condense out and form nano-grains of ‘silica’ floating in the water. To avoid growing too large, these silica grains must spend a few months to several years at most rising from the seafloor to the surface of the ocean, before being incorporated into larger ice grains in the vents that connect the ocean to the surface of Enceladus. After being ejected into space via the moon’s geysers, the ice grains erode, liberating the tiny rocky inclusions subsequently detected by Cassini.
Additional data suggest that the interior of Enceladus is very porous, which means that interior ocean might not be one large bubble but a complex liquid-filled cave.
Using Cassini scientists have detected tiny grains of rock orbiting Saturn that they think were formed on the floor of the interior ocean of Enceladus and then spewed out its vents into space.
They believe that these silicon-rich grains originate on the seafloor of Enceladus, where hydrothermal processes are at work. On the seafloor, hot water at a temperature of at least 90 degrees Celsius dissolves minerals from the moon’s rocky interior. The origin of this energy is not well understood, but likely includes a combination of tidal heating as Enceladus orbits Saturn, radioactive decay in the core and chemical reactions.
As the hot water travels upward, it comes into contact with cooler water, causing the minerals to condense out and form nano-grains of ‘silica’ floating in the water. To avoid growing too large, these silica grains must spend a few months to several years at most rising from the seafloor to the surface of the ocean, before being incorporated into larger ice grains in the vents that connect the ocean to the surface of Enceladus. After being ejected into space via the moon’s geysers, the ice grains erode, liberating the tiny rocky inclusions subsequently detected by Cassini.
Additional data suggest that the interior of Enceladus is very porous, which means that interior ocean might not be one large bubble but a complex liquid-filled cave.