Scroll down to read this post.

 

Readers!

 

The time has come for my annual short Thanksgiving/Christmas fund drive for Behind The Black. I must do this every year in order to make sure I have earned enough money to pay my bills.

 

For this two-week campaign, I am offering a special deal to encourage donations. Donations of $200 will get a free autographed copy of the new paperback edition of Genesis: The Story of Apollo 8, while donations of $250 will get a free autographed copy of the new hardback edition. If you desire a copy, make sure you provide me your address with your donation.

 

As I noted in July, the support of my readers through the years has given me the freedom and ability to analyze objectively the ongoing renaissance in space, as well as the cultural changes -- for good or ill -- that are happening across America. Fourteen years ago I wrote that SLS and Orion were a bad ideas, a waste of money, would be years behind schedule, and better replaced by commercial private enterprise. Only now does it appear that Washington might finally recognize this reality.

 

In 2020 when the world panicked over COVID I wrote that the panic was unnecessary, that the virus was apparently simply a variation of the flu, that masks were not simply pointless but if worn incorrectly were a health threat, that the lockdowns were a disaster and did nothing to stop the spread of COVID. Only in the past year have some of our so-called experts in the health field have begun to recognize these facts.

 

Your help allows me to do this kind of intelligent analysis. I take no advertising or sponsors, so my reporting isn't influenced by donations by established space or drug companies. Instead, I rely entirely on donations and subscriptions from my readers, which gives me the freedom to write what I think, unencumbered by outside influences.

 

Please consider supporting my work here at Behind the Black. You can support me either by giving a one-time contribution or a regular subscription. There are four ways of doing so:

 

1. Zelle: This is the only internet method that charges no fees. All you have to do is use the Zelle link at your internet bank and give my name and email address (zimmerman at nasw dot org). What you donate is what I get.

 

2. Patreon: Go to my website there and pick one of five monthly subscription amounts, or by making a one-time donation.
 

3. A Paypal Donation or subscription:

 

4. Donate by check, payable to Robert Zimmerman and mailed to
 
Behind The Black
c/o Robert Zimmerman
P.O.Box 1262
Cortaro, AZ 85652

 

You can also support me by buying one of my books, as noted in the boxes interspersed throughout the webpage or shown in the menu above.


Mapping daylight at the Moon’s South Pole

Using data from the Japanese lunar orbiter Kaguya, scientists have identified several locations near the Moon’s south pole that are in daylight from 86 to 94 percent of the time. Key quote from abstract:

The place receiving the most illumination (86% of the year) is located close to the rim of Shackleton crater at 88.74°S 124.5°E. However two other areas, less than 10 km apart from each other, are collectively lit for 94% of the year. We found that sites exist near the south pole that are continuously lit for several months during summer. We were also able to map the locations and durations of eclipse periods for these areas. Finally we analyzed the seasonal variations in lighting conditions, from summer to winter, for key areas near the south pole. We conclude that areas exist near the south pole that have illumination conditions that make them ideal candidates as future outpost sites. [emphasis mine]

Below is a composite close-up image of the rim of Shackleten crator that I assembled using this Lunar Reconnaissance image. The key quote from the full caption :

The full [Narrow Angle Camera] mosaic reveals a shelf on the southeast flank of the crater that is more than two kilometers across and perfectly suitable for a future landing. The extreme Sun angle gives the surface an exaggerated rough appearance, but if you look closely at this scale any area that is between the small craters might make a good landing site.

Rim of Shackleton Crater

Genesis cover

On Christmas Eve 1968 three Americans became the first humans to visit another world. What they did to celebrate was unexpected and profound, and will be remembered throughout all human history. Genesis: the Story of Apollo 8, Robert Zimmerman's classic history of humanity's first journey to another world, tells that story, and it is now available as both an ebook and an audiobook, both with a foreword by Valerie Anders and a new introduction by Robert Zimmerman.

 

The print edition can be purchased at Amazon. from any other book seller, or direct from my ebook publisher, ebookit. The ebook is available everywhere for $5.99 (before discount) at amazon, or direct from my ebook publisher, ebookit. If you buy it from ebookit you don't support the big tech companies and the author gets a bigger cut much sooner.


The audiobook is also available at all these vendors, and is also free with a 30-day trial membership to Audible.
 

"Not simply about one mission, [Genesis] is also the history of America's quest for the moon... Zimmerman has done a masterful job of tying disparate events together into a solid account of one of America's greatest human triumphs."--San Antonio Express-News

One comment

  • James Fincannon

    We have a great deal of laser data from Kaguya and its still coming from LRO. I agree that these data can be helpful to identify outpost sites. However, I have a few issues with the laser data I would like addressed.

    1). The drawback of any laser data is that the laser lights only paints a small fraction of the lunar surface area (<0.2%). This is my estimate based on their stated 1 laser shot per second frequency, operating for 2 years, and a 20 m radius laser beam at the lunar surface. Thus,

    Total number of laser shots= 365 days/year *2 years operation * 24 hours/day * 60 minutes/hour * 60 seconds/minute =63 million laser shots.

    Area painted by laser light= 63 million laser shots * PI * (20 meter radius/laser shot / 1000 meter/kilometer) ^2=~79000 square kilometers

    Moon's surface area=4*PI*(1737 km Moon radius)^2=~38 million square kilometers

    Percentage of lunar surface with altitude measured by laser light= 79000/38000000*(100 percentage/decimal fraction)=~0.2%

    They then interpolate these sparse points to create digital maps at 500m/pixel. I don't know about you, but I am a little dubious of interpolating a 500 m by 500 m surface with only 0.2% of the area fully defined. What is needed is an error estimate for each of these maps points. I admit the polar regions have somewhat better coverage/laser point density because of the orbit crossing the poles, but it is not that much more (likely <1%).

    Although laser data gives a general idea of the illumination situation, it is very hard to be accurate (except for a particular point and illumination analysis requires entire large areas). What if the laser measured the low point (or high point) in that 500 m by 500 m area rather than an average point?

    What was needed was a terrain map based on the combined laser data and stereo-imagery derived data, of which JAXA apparently did some work on.

    2). I am a little concerned about placing an outpost right where the light is best since it may be hard to drive up to the high points. The outpost may be better a little lower down and cables run to the better illuminated spots.

    3). I am concerned about how much Kaguya data they used to generate the results. Earlier papers they wrote on the subject (http://www.lpi.usra.edu/meetings/lpsc2010/pdf/2293.pdf) implied they used a terrain model from 85 deg to 90 deg south. But the problem is that there may be shadow casting terrain (for very low Sun angles during lunar Winter) beyond that.

    4). In comparing with actual Clementine images, it is fortuitous they could get a match given the uncertainty of the surface slopes due to the interpolations mentioned in (1). For shallow sun angles, the angle of the lunar surface with respect tot he Sun affects its brightness considerably. Even given a perfect digital elevation model, the method of generating polygonal surfaces from point data is arbitrary.

    In summary, the identified sites were very good, but more work is needed to confirm the results. This can be done partly with LRO LOLA laser data and mainly with stereo-imagery derived altimetry (and we have a slew of images from LRO to do this).

Readers: the rules for commenting!

 

No registration is required. I welcome all opinions, even those that strongly criticize my commentary.

 

However, name-calling and obscenities will not be tolerated. First time offenders who are new to the site will be warned. Second time offenders or first time offenders who have been here awhile will be suspended for a week. After that, I will ban you. Period.

 

Note also that first time commenters as well as any comment with more than one link will be placed in moderation for my approval. Be patient, I will get to it.

Leave a Reply

Your email address will not be published. Required fields are marked *