The uncertainty of science: New research suggests first image in ’22 of Milky Way’s central black hole is likely not accurate

The original interpretation. Click for full image.

The new asymmetrical interpretation. Click for original image.
Surprise, surprise! A new analysis of the data behind the 2022 false-color radio image of the supermassive black hole at the center of the Milky Way, posted to the right, suggests that image was not accurately interpreted from the data.
Astronomers led by the National Astronomical Observatory of Japan (NAOJ) say their analysis points at Sagittarius A* having an elongated accretion disk, as opposed to the ring-like “doughnut” image released in 2022 by an international team called the Event Horizon Telescope (EHT) collaboration.
The EHT image shows a central dark region where the hole resides, circled by the light coming from super-heated gas accelerated by immense gravitational forces.
But a new paper published today in Monthly Notices of the Royal Astronomical Society suggests that part of this appearance may actually be an artefact because of the way the image was put together. … Assistant professor Miyoshi Makoto, of the NAOJ, said: “Our image is slightly elongated in the east-west direction, and the eastern half is brighter than the western half. We think this appearance means the accretion disk surrounding the black hole is rotating at about 60 per cent of the speed of light.” He added: “Why, then, did the ring-like image emerge? Well, no telescope can capture an astronomical image perfectly. We hypothesise that the ring image resulted from errors during EHT’s imaging analysis and that part of it was an artefact, rather than the actual astronomical structure.”
It must be noted that this false color radio image was assembled from eight different radio telescopes across the globe, and to bring the data together required a great deal of massaging. While most astronomers appear to favor the top picture, it is just as likely that the bottom picture is a better representation. Either way, both must be considered in any future studies of Sagittarius A*’s environment and structure.
The original interpretation. Click for full image.
The new asymmetrical interpretation. Click for original image.
Surprise, surprise! A new analysis of the data behind the 2022 false-color radio image of the supermassive black hole at the center of the Milky Way, posted to the right, suggests that image was not accurately interpreted from the data.
Astronomers led by the National Astronomical Observatory of Japan (NAOJ) say their analysis points at Sagittarius A* having an elongated accretion disk, as opposed to the ring-like “doughnut” image released in 2022 by an international team called the Event Horizon Telescope (EHT) collaboration.
The EHT image shows a central dark region where the hole resides, circled by the light coming from super-heated gas accelerated by immense gravitational forces.
But a new paper published today in Monthly Notices of the Royal Astronomical Society suggests that part of this appearance may actually be an artefact because of the way the image was put together. … Assistant professor Miyoshi Makoto, of the NAOJ, said: “Our image is slightly elongated in the east-west direction, and the eastern half is brighter than the western half. We think this appearance means the accretion disk surrounding the black hole is rotating at about 60 per cent of the speed of light.” He added: “Why, then, did the ring-like image emerge? Well, no telescope can capture an astronomical image perfectly. We hypothesise that the ring image resulted from errors during EHT’s imaging analysis and that part of it was an artefact, rather than the actual astronomical structure.”
It must be noted that this false color radio image was assembled from eight different radio telescopes across the globe, and to bring the data together required a great deal of massaging. While most astronomers appear to favor the top picture, it is just as likely that the bottom picture is a better representation. Either way, both must be considered in any future studies of Sagittarius A*’s environment and structure.