Protein molecules found in meteorite
Scientists have discovered bits of a protein molecule inside a meteorite that fell in Algeria in 1990 and was quickly recovered.
The protein is called hemolithin.
For hemolithin to have formed naturally in the configuration found would require glycine to form first, perhaps on the surface of grains of space dust. After that, heat by way of molecular clouds might have induced units of glycine to begin linking into polymer chains, which at some point, could evolve into fully formed proteins. The researchers note that the atom groupings on the tips of the protein form an iron oxide that has been seen in prior research to absorb photons—a means of splitting water into oxygen and hydrogen, thereby producing an energy source that would also be necessary for the development of life.
The real significance of this find is what it reveals we do not know. Most asteroid material from the very beginnings of the solar system (the type of material that would contain such a protein) is very fragile, and does not survive the journey though the Earth’s atmosphere. Thus, our meteorite sample obtained here on Earth, which is our entire sample, is very biased.
When we start getting samples back from asteroids (as both Hayabusa-2 and OSIRIS-REx are about to do), our understanding of the early solar system, as well as that of asteroids, will change radically. This story only gives us a hint of that fact.
Hat tip reader and fellow caver John Harman.
Scientists have discovered bits of a protein molecule inside a meteorite that fell in Algeria in 1990 and was quickly recovered.
The protein is called hemolithin.
For hemolithin to have formed naturally in the configuration found would require glycine to form first, perhaps on the surface of grains of space dust. After that, heat by way of molecular clouds might have induced units of glycine to begin linking into polymer chains, which at some point, could evolve into fully formed proteins. The researchers note that the atom groupings on the tips of the protein form an iron oxide that has been seen in prior research to absorb photons—a means of splitting water into oxygen and hydrogen, thereby producing an energy source that would also be necessary for the development of life.
The real significance of this find is what it reveals we do not know. Most asteroid material from the very beginnings of the solar system (the type of material that would contain such a protein) is very fragile, and does not survive the journey though the Earth’s atmosphere. Thus, our meteorite sample obtained here on Earth, which is our entire sample, is very biased.
When we start getting samples back from asteroids (as both Hayabusa-2 and OSIRIS-REx are about to do), our understanding of the early solar system, as well as that of asteroids, will change radically. This story only gives us a hint of that fact.
Hat tip reader and fellow caver John Harman.