New issue with Voyager-1

The routes the Voyager spacecraft have
taken since launch.
According to a NASA report yesterday, engineers are dealing with a new technical problem that has occurred Voyager-1, flying out beyond the edge of the solar system.
On Oct. 16, the flight team sent a command to turn on one of the spacecraft’s heaters. While Voyager 1 should have had ample power to operate the heater, the command triggered the fault protection system. The team learned of the issue when the Deep Space Network couldn’t detect Voyager 1’s signal on Oct. 18.
The spacecraft typically communicates with Earth using what’s called an X-band radio transmitter, named for the specific frequency it uses. The flight team correctly hypothesized that the fault protection system had lowered the rate at which the transmitter was sending back data. This mode requires less power from the spacecraft, but it also changes the X-band signal that the Deep Space Network needs to listen for. Engineers found the signal later that day, and Voyager 1 otherwise seemed to be in a stable state as the team began to investigate what had happened.
Then, on Oct. 19, communication appeared to stop entirely. The flight team suspected that Voyager 1’s fault protection system was triggered twice more and that it turned off the X-band transmitter and switched to a second radio transmitter called the S-band. While the S-band uses less power, Voyager 1 had not used it to communicate with Earth since 1981. It uses a different frequency than the X-band transmitters signal is significantly fainter. The flight team was not certain the S-band could be detected at Earth due to the spacecraft’s distance, but engineers with the Deep Space Network were able to find it.
Though communications with the spacecraft continue, no data can be downloaded and work is essentially suspended while engineers troubleshoot why Voyager-1 kept initiating its fault system.
It is amazing that communications were still possible using the S-band after more than forty years. I would bet that no engineers from then still work at the Deep Space Network. Kudos to the engineers there now for finding the signal.
The routes the Voyager spacecraft have
taken since launch.
According to a NASA report yesterday, engineers are dealing with a new technical problem that has occurred Voyager-1, flying out beyond the edge of the solar system.
On Oct. 16, the flight team sent a command to turn on one of the spacecraft’s heaters. While Voyager 1 should have had ample power to operate the heater, the command triggered the fault protection system. The team learned of the issue when the Deep Space Network couldn’t detect Voyager 1’s signal on Oct. 18.
The spacecraft typically communicates with Earth using what’s called an X-band radio transmitter, named for the specific frequency it uses. The flight team correctly hypothesized that the fault protection system had lowered the rate at which the transmitter was sending back data. This mode requires less power from the spacecraft, but it also changes the X-band signal that the Deep Space Network needs to listen for. Engineers found the signal later that day, and Voyager 1 otherwise seemed to be in a stable state as the team began to investigate what had happened.
Then, on Oct. 19, communication appeared to stop entirely. The flight team suspected that Voyager 1’s fault protection system was triggered twice more and that it turned off the X-band transmitter and switched to a second radio transmitter called the S-band. While the S-band uses less power, Voyager 1 had not used it to communicate with Earth since 1981. It uses a different frequency than the X-band transmitters signal is significantly fainter. The flight team was not certain the S-band could be detected at Earth due to the spacecraft’s distance, but engineers with the Deep Space Network were able to find it.
Though communications with the spacecraft continue, no data can be downloaded and work is essentially suspended while engineers troubleshoot why Voyager-1 kept initiating its fault system.
It is amazing that communications were still possible using the S-band after more than forty years. I would bet that no engineers from then still work at the Deep Space Network. Kudos to the engineers there now for finding the signal.