Astronomers make first radio observations of key type of supernova
The uncertainty of science: Using a variety of telescopes, astronomers have not only made the first radio observations of key type of supernova, they have also detected helium in the data, suggesting that this particular supernova of that type was still atypical.
This marks the first confirmed Type Ia supernova triggered by a white dwarf star that pulled material from a companion star with an outer layer consisting primarily of helium; normally, in the rare cases where the material stripped from the outer layers of the donor star could be detected in spectra, this was mostly hydrogen.
Type Ia supernovae are important for astronomers since they are used to measure the expansion of the universe. However, the origin of these explosions has remained an open question. While it is established that the explosion is caused by a compact white dwarf star that somehow accretes too much matter from a companion star, the exact process and the nature of the progenitor is not known. [emphasis mine]
The highlighted sentences are really the most important take-away from this research. Type Ia supernovae were the phenomenon used by cosmologists to detect the unexpected acceleration of the universe’s expansion billions of years ago. That research assumed these supernovae were well understood and consistently produced the same amount of energy and light, no matter how far away they were or the specific conditions which caused them.
This new supernovae research illustrates how absurd that assumption was. Type Ia supernovae are produced by the interaction of two stars, both of which could have innumerable unique features. It is therefore unreasonable as a scientist to assume all such supernovae are going to be identical in their output. And yet, that is what the cosmologists did in declaring the discovery of dark energy in the late 1990s.
It is also what the scientists who performed this research do. To quote one of the co-authors: “While normal Type Ia supernovae appear to always explode with the same brightness, this supernova tells us that there are many different pathways to a white dwarf star explosion.”
Forgive me if I remain very skeptical.
The uncertainty of science: Using a variety of telescopes, astronomers have not only made the first radio observations of key type of supernova, they have also detected helium in the data, suggesting that this particular supernova of that type was still atypical.
This marks the first confirmed Type Ia supernova triggered by a white dwarf star that pulled material from a companion star with an outer layer consisting primarily of helium; normally, in the rare cases where the material stripped from the outer layers of the donor star could be detected in spectra, this was mostly hydrogen.
Type Ia supernovae are important for astronomers since they are used to measure the expansion of the universe. However, the origin of these explosions has remained an open question. While it is established that the explosion is caused by a compact white dwarf star that somehow accretes too much matter from a companion star, the exact process and the nature of the progenitor is not known. [emphasis mine]
The highlighted sentences are really the most important take-away from this research. Type Ia supernovae were the phenomenon used by cosmologists to detect the unexpected acceleration of the universe’s expansion billions of years ago. That research assumed these supernovae were well understood and consistently produced the same amount of energy and light, no matter how far away they were or the specific conditions which caused them.
This new supernovae research illustrates how absurd that assumption was. Type Ia supernovae are produced by the interaction of two stars, both of which could have innumerable unique features. It is therefore unreasonable as a scientist to assume all such supernovae are going to be identical in their output. And yet, that is what the cosmologists did in declaring the discovery of dark energy in the late 1990s.
It is also what the scientists who performed this research do. To quote one of the co-authors: “While normal Type Ia supernovae appear to always explode with the same brightness, this supernova tells us that there are many different pathways to a white dwarf star explosion.”
Forgive me if I remain very skeptical.