Euclid’s first images look good
Scientists have determined that the first test images from the two cameras on the recently launched orbiting Euclid space telescope are sharp and as expected.
Both VIS and NISP provided these unprocessed raw images. Compared to commercial products, the cameras are immensely more complex. VIS comprises 36 individual CCDs with a total of 609 megapixels and produces high-resolution images of billions of galaxies in visible light. This is how astronomers determine their shape. The first images already give an impression of the abundance that the data will provide.
NISP’s detector consists of 16 chips with a total of 64 megapixels. It operates in the near-infrared at wavelengths between 1 and 2 microns. In addition, NISP serves as a spectrograph, which splits the light of the captured objects similar to a rainbow and allows for a finer analysis. These data will allow the mapping of the three-dimensional distribution of galaxies.
Knowing that 3D distribution will allow scientists to better determine the nature of both dark energy (related to the acceleration of the universe’s expansion) and dark matter (related to an undiscovered mass that affects the formation and shape of galaxies).
Scientists have determined that the first test images from the two cameras on the recently launched orbiting Euclid space telescope are sharp and as expected.
Both VIS and NISP provided these unprocessed raw images. Compared to commercial products, the cameras are immensely more complex. VIS comprises 36 individual CCDs with a total of 609 megapixels and produces high-resolution images of billions of galaxies in visible light. This is how astronomers determine their shape. The first images already give an impression of the abundance that the data will provide.
NISP’s detector consists of 16 chips with a total of 64 megapixels. It operates in the near-infrared at wavelengths between 1 and 2 microns. In addition, NISP serves as a spectrograph, which splits the light of the captured objects similar to a rainbow and allows for a finer analysis. These data will allow the mapping of the three-dimensional distribution of galaxies.
Knowing that 3D distribution will allow scientists to better determine the nature of both dark energy (related to the acceleration of the universe’s expansion) and dark matter (related to an undiscovered mass that affects the formation and shape of galaxies).