Two new NASA science spacecraft achieve “first light”

First lights from Carruthers and IMAP

According to two different NASA announcements today, two new science spacecraft designed to study the Sun’s environment have successfully demonstrated that their cameras and instruments are working as planned, having taken their “first light” data after their recent launches.

That data is to the right. On top is the first light data from the Carruthers Geocorona Observatory. From the caption:

The images were taken on Nov. 17, 2025, from a location near the Sun-Earth Lagrange point 1 by the spacecraft’s Wide Field Imager (left column) and Narrow Field Imager (right column) in far ultraviolet light (top row) and the specific wavelength of light emitted by atomic hydrogen known as Lyman-alpha (bottom row). Earth is the larger, bright circle near the middle of each image; the Moon is the smaller circle below and to the left of it. The fuzzy “halo” around Earth in the images in the bottom row is the geocorona: the ultraviolet light emitted by Earth’s exosphere, or outermost atmospheric layer. The lunar surface still shines in Lyman-alpha because its rocky surface reflects all wavelengths of sunlight — one reason it is important to compare Lyman-alpha images with the broad ultraviolet filter. The far ultraviolet light imagery from the Narrow Field Imagery also captured two background stars, whose surface temperatures must be approximately twice as hot as the our Sun’s to be so bright in this wavelength of light.

This data will help map the corona or Sun’s atmosphere, near the Sun.

On bottom is the first light data from IMAP (Interstellar Mapping and Acceleration Probe), which will work to map the very fringes of the solar system, the heliosphere that separates the Sun’s environment from interstellar space.

To map the heliosphere’s boundaries, IMAP is equipped with three instruments that measure energetic neutral atoms: IMAP-Lo, IMAP-Hi, and IMAP-Ultra. These uncharged particles, called ENAs for short, are cosmic messengers formed at the heliosphere’s edge that allow scientists to study the boundary region and its variability from afar.

…As IMAP travelled away from Earth, the IMAP-Ultra instrument looked back at the planet and picked up ENAs created by Earth’s magnetic environment. These terrestrially made ENAs, which overwhelm ENAs coming from the heliosphere in sheer numbers, is a reason why IMAP will be stationed at L1. There the spacecraft will have an unobstructed view of ENAs coming from the heliosphere’s boundaries.

…Earth’s magnetic environment can be seen glowing bright. … Earth sits at the center of the red donut-shaped structure.

Both spacecraft are still on their way to their final operational position at L1, so actual science operations have not yet begun.

Astronomers propose a new explanation for “Bright Blue Outbursts”

Among the number of quick transient events discovered by the new automated survey telescopes on the ground and in space that have been built in the past two decades are something astronomers have labeled “bright blue outbursts”, bright flashes of blue and ultraviolet light that appear quickly and then fade away, leaving behind X-ray and radio emissions.

There are several theories as to what causes these flashes, but none are accepted whole-heartedly. Now a team of astronomers have looked at one flash and proposed a new theory.

This curious class of objects is known as luminous fast blue optical transients (LFBOTs), and with slightly more than a dozen discovered so far, astronomers have debated whether they are produced by an unusual type of supernova or by interstellar gas falling into a black hole.

Analysis of the brightest LFBOT to-date, named AT 2024wpp and discovered last year, shows that they’re neither. Instead, a team led by researchers from the University of California, Berkeley, concluded that they are caused by an extreme tidal disruption, where a black hole of up to 100 times the mass of our Sun completely shreds its massive star companion within days.

… “The sheer amount of radiated energy from these bursts is so large that you can’t power them with a core collapse stellar explosion — or any other type of normal stellar explosion,” says Natalie LeBaron, UC Berkeley graduate student and first author on the paper presenting the Gemini data [1]. “The main message from AT 2024wpp is that the model that we started off with is wrong. It’s definitely not just an exploding star.”

The researchers hypothesize that the intense, high-energy light emitted during this extreme tidal disruption was a consequence of the long parasitic history of the black hole binary system. As they reconstruct this history, the black hole had been sucking material from its companion for a long time, completely enshrouding itself in a halo of material too far from the black hole for it to swallow.

Need I mention that this theory, while better explaining the data, remains unconfirmed and decidedly uncertain.

The beginnings of a planetary nebula

Calabash Nebula
Click for original image.

Cool image time! The picture to the right, reduced and sharpened to post here, was taken by the Hubble Space Telescope back in 2017 but released this week by NASA’s PR department. It shows what astronomers have nicknamed the Calabash Nebula. From the Wikipedia page:

The Calabash Nebula, also known as the Rotten Egg Nebula or by its technical name OH 231.84 +4.22, is a protoplanetary nebula (PPN) 1.4 light years (13 Pm) long and located some 5,000 light years (47 Em) from Earth in the constellation Puppis. The name “Calabash Nebula” was first proposed in 1989 in an early paper on its expected nebular dynamics, based on the nebula’s appearance.[5] The Calabash is almost certainly a member of the open cluster Messier 46, as it has the same distance, radial velocity, and proper motion.[6] The central star is QX Puppis, a binary composed of a very cool Mira variable and an A-type main-sequence star.

The star in the center is an ancient red giant that is in the initial stages of dying. As it does so it periodically erupts, sending out jets of material from its poles. The result is this elongated shape. According to the release, “the gas shown in yellow is moving close to a million kilometers an hour.”

Over the next few thousand years these eruptions will shape the planetary nebula. Since the central star is actually a binary, those two stars will likely act like the blades in a mixer, adding more interesting forms to the material as it is shot out to form this nebula.

New data detects potassium and chlorine in Cassiopeia supernova remnant

The Cassiopeia supernova remnant
Click for original.

Using the Japanese orbiting XRISM space telescope, astronomers have now detected evidence of both potassium and chlorine in the ancient Cassiopeia supernova remnant.

The picture to the right, reduced to post here, shows the evidence for potassium in the remnant, overlaid onto an image of Cassiopeia produced by combining data from X-ray data from Chandra, infrared data from Webb, and optical data from Hubble. The green grid boxes indicate strong evidence of potassium, while the yellow grid boxes indicate weaker evidence.

The roughly circular Cas A supernova remnant spans about 10 light-years, is over 340 years old, and has a superdense neutron star at its center — the remains of the original star’s core. Scientists using NASA’s Chandra X-ray Observatory had previously identified signatures of iron, silicon, sulfur, and other elements within Cas A.

In the hunt for other elements, the team used the Resolve instrument aboard XRISM to look at the remnant twice in December 2023. The researchers were able to pick out the signatures for chlorine and potassium, determining that the remnant contains ratios much higher than expected. Resolve also detected a possible indication of phosphorous, which was previously discovered in Cas A by infrared missions.

The orientation and position of these grid boxes on the face of the expanding supernova remnant suggest the original star and explosion might have formed unevenly.

Nova explosions appear to have multiple slow and fast explosive outflows

Nova
Click for original.

According to new observations of two different recent nova events have shown that the star’s eruption is complex, with multiple outflows moving at both fast and slow speeds.

The graphic and images to the right come from figure 1 of the paper, and show the evolution of one of these novae, Nova V1674 Herculis. The initial slow flow along the star’s equator, indicated at the top, acts to force the later fast flow to move out along the star’s poles, as shown at the bottom. From the paper’s abstract:

The images of the very fast 2021 nova V1674 Her, taken just 2–3 days after discovery, reveal the presence of two perpendicular outflows. The interaction between these outflows probably drives the observed γ-ray emission. Conversely, the images of the very slow 2021 nova V1405 Cas suggest that the bulk of the accreted envelope was ejected more than 50 days after the eruption began, as the nova slowly rose to its visible peak, during which the envelope engulfed the system in a common-envelope phase. These images offer direct observational evidence that the mechanisms driving mass ejection from the surfaces of accreting white dwarfs are not as simple as previously thought, revealing multiple outflows and delayed ejections.

Novae are stellar explosions of a much smaller scale than supernovae, and occur when a white dwarf star gathers enough material on its surface stolen from a binary star companion for that material to go critical. Because the stars are binaries, with some systems this process is periodic.

That these better observations, including good high resolution visuals, reveal the explosions are more complicated than “previously thought” should not be a surprise to anyone. In fact, to even suggest that anyone expected the process to be simply is absurd. Whenever we get a better view we discover new details that increase the complexity of any phenomenon.

Astronomers detect a seven-hour-long gamma ray burst, the longest many times over

Very long GRB

Astronomers have detected the longest gamma ray burst (GRB) ever measured, lasting more than seven hours when most GRBs at most last mere seconds.

The image to the right was taken by the Hubble Space Telescope and is taken from figure 1 of the peer-reviewed paper [pdf]. The two hash marks indicate the location of the GRB, within the outer reaches of its host galaxy and inside one of its spiral arms, based on other data. The data also suggested the host galaxy is “massive [100 billion solar masses], dusty, and [an] extremely asymmetric system that is consistent with two galaxies undergoing a major merger.”

The GRB’s long length means that none of the known theories for its origin work. From the press release:

Of the roughly 15,000 GRBs observed since the phenomenon was first recognized in 1973, only a half dozen come close to the length of GRB 250702B. Their proposed origins range from the collapse of a blue supergiant star, a tidal disruption event, or a newborn magnetar. GRB 250702B, however, doesn’t fit neatly into any known category.

From the data obtained so far, scientists have a few ideas of possible origin scenarios: (1) a black hole falling into a star that’s been stripped of its hydrogen and is now almost purely helium, (2) a star (or sub-stellar object such as a planet or brown dwarf) being disrupted during a close encounter with a stellar compact object, such as a stellar black hole or a neutron star, in what is known as a micro-tidal disruption event, (3) a star being torn apart as it falls into an intermediate-mass black hole — a type of black hole with a mass ranging from one hundred to one hundred thousand times the mass of our Sun that is believed to exist in abundance, but has so far been very difficult to find. If it is the latter scenario, this would be the first time in history that humans have witnessed a relativistic jet from an intermediate mass black hole in the act of consuming a star.

None of these proposed explanations are confirmed. What is known is that this GRB was unique in all ways, defying all theoretical expectations.

A small galaxy with lots of massive stars

A small galaxy with many massive stars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope and released this week as the European Space Agency’s (ESA) Hubble picture of the week.

This dwarf galaxy, 13 million light years away, is called Markarian 178 (Mrk 178). Though much smaller than the Milky Way, it is packed with massive stars. From the caption:

While the bulk of the galaxy is blue owing to an abundance of young, hot stars with little dust shrouding them, Mrk 178 gets a red hue from a collection of massive stars, which are especially concentrated in the brightest, reddish region near the galaxy’s edge. This azure cloud is home to a large number of rare objects called Wolf–Rayet stars. Wolf–Rayet stars are massive stars that are casting off their atmospheres through powerful winds. Because Mrk 178 contains so many Wolf–Rayet stars, the bright emission lines from these stars’ hot stellar winds are etched upon the galaxy’s spectrum. Particularly ionised hydrogen and oxygen appear as a red colour to Mrk 178 in this photo, observed using some of Hubble’s specialised light filters.

Massive stars enter the Wolf–Rayet phase just before they collapse into black holes or neutron stars. Because Wolf–Rayet stars last for only a few million years, researchers know that something must have triggered a recent burst of star formation in Mrk 178. At first glance, it’s not clear what could be the cause — Mrk 178 doesn’t seem to have any close galactic neighbours that could have stirred up its gas to form new stars. Astronomers believe that it was triggered by the interaction with a smaller satellite, as revealed by the presence of low surface brightness tidal features detected around Mrk 178 in deep imaging acquired with the Large Binocular Telescope.

And yet, these observations do not see this small satellite galaxy. It has either been completely absorbed into Mrk 178, or maybe this theory for explaining this dwarf galaxy’s make-up is flawed.

New data strengthens the conflict in the observed value for the universe’s expansion rate

Graphic showing the conflict
Click for original.

The uncertainty of science: New research using a combination of ground- and space-based telescopes has not only failed to resolve the difference between the two values observed for the Hubble constant (the expansion rate of the universe), it actually confirms that conflict.

The graphic to the right nicely illustrates the conflict. Observations from the early universe come up with a value of 67-68 kiloparsecs per second per megaparsec for the Hubble constant. Observations from the present universe, including these new more precise measurements, come up with a value of 73-74. From the press release:

A team of astronomers using a variety of ground and space-based telescopes including the W. M. Keck Observatory on Maunakea, Hawaiʻi Island, have made one of the most precise independent measurements yet of how fast the universe is expanding, further deepening the divide on one of the biggest mysteries in modern cosmology.

Using data gathered from Keck Observatory’s Cosmic Web Imager (KCWI) as well as NASA’s James Webb Space Telescope (JWST), the Hubble Space Telescope (HST) the Very Large Telescope (VLT), and European Organisation for Astronomical Research in the Southern Hemisphere (ESO) researchers have independently confirmed that the universe’s current rate of expansion, known as the Hubble constant (H₀), does not match values predicted from measurements from the universe when it was much younger.

Cosmologists call this conflict “the Hubble Tension”, a absurd fake term expressly designed to hide the fact that they have no idea what’s going on. It isn’t “tension”, it is a perfect example of good observations coming up with contradictory data that no theory can explain.

Ground-based telescope actually photographs an exoplanet

exoplanet imaged directly
Click for original movie.

Using a new instrument on the Subaru Telescope in Hawaii astronomers have not only discovered a massive exoplanet orbiting a star, they have been able to actually photograph the planet itself.

The arrow in the picture to the right shows that planet. That picture is a screen capture from a short movie complied from five observations taken over several months earlier this year, showing the planet as it orbited the star, the light of which is blocked out so as to not blind the camera. From the press release:

The newly discovered planet, HIP 54515 b, orbits a star 271 light-years away in the constellation Leo. With nearly 18 times Jupiter’s mass, it circles its star at about Neptune’s distance from our Sun. But the star and planet appear very close when seen from Earth; roughly the size that a baseball seen 100 km away would appear. The SCExAO system produced extremely sharp images allowing us to see the planet.

The astronomers also used this new instrument to image a brown dwarf star with a mass equivalent to sixty Jupiters about 169 light years away.

New data from VLT uncovers numerous debris disks around stars

A sampling of debris disks
Click for original

Using a new instrument on the Very Large Telescope (VLT) in Chile, astronomers have compiled a catalog of 51 potential exoplanet solar systems, all with intriguing debris disks surround the stars with features suggesting the existence of asteroids and comets.

The image to the right shows a sampling of those systems. From the press release:

“To obtain this collection, we processed data from observations of 161 nearby young stars whose infrared emission strongly indicates the presence of a debris disk,” says Natalia Engler (ETH Zurich), the lead author of the study. “The resulting images show 51 debris disks with a variety of properties — some smaller, some larger, some seen from the side and some nearly face-on – and a considerable diversity of disk structures. Four of the disks had never been imaged before.”

Comparisons within a larger sample are crucial for discovering the systematics behind object properties. In this case, an analysis of the 51 debris disks and their stars confirmed several systematic trends: When a young star is more massive, its debris disk tends to have more mass as well. The same is true for debris disks where the majority of the material is located at a greater distance from the central star.

Arguably the most interesting feature of the SPHERE debris disks are the structures within the disks themselves. In many of the images, disks have a concentric ring- or band-like structure, with disk material predominantly found at specific distances from the central star. The distribution of small bodies in our own solar system has a similar structure, with small bodies concentrated in the asteroid belt (asteroids) and the Kuiper belt (comets).

The data from various telescopes both on the ground and in space is increasingly telling us that our solar system is not unique, and that the galaxy is filled with millions of similar systems, all in different states of formation. This hypothesis is further strengthened by the appearance of interstellar comet 3I/Atlas, which despite coming from outside our solar system is remarkably similar to the comets formed here.

Astronomers detect another galaxy that shouldn’t be there, so soon after the Big Bang

A spiral galaxy too early in the universe
Click for original.

Using the Webb Space Telescopes astronomers have detected another galaxy that shouldn’t be there, so soon after the Big Bang.

The image to the right comes from figure 1 of the peer-reviewed paper. The galaxy’s two spiral arms form a backward “S” emanating out from the galaxy’s nucleus. From the press release:

Using JWST, researchers Rashi Jain and Yogesh Wadadekar spotted a galaxy remarkably similar to our own Milky Way. Yet this system formed when the cosmos was barely 1.5 billion years old—roughly a tenth of its present age. They named it Alaknanda, after the Himalayan river that is a twin headstream of the Ganga alongside the Mandakini—fittingly, the Hindi name for the Milky Way.

…It already has two sweeping spiral arms wrapped around a bright, rounded central region (the galaxy’s ‘bulge’), spanning about 30,000 light-years across. Even more impressively, it is annually churning out new stars, their combined mass roughly equivalent to 60 times the mass of our Sun. This rate is about 20 times that of the present-day Milky Way! About half of Alaknanda’s stars appear to have formed in only 200 million years—a blink in cosmic time.

This galaxy underlines the difficulty for cosmologists by much of Webb’s data of the early universe. Present theories of galaxy formation say it should take billions of years to form such a spiral galaxy, meaning it shouldn’t exist as yet so soon, only 1.5 billion years after the Big Bang.

Either the theories have to be revised substantially, or they are simply wrong entirely. Or we are missing or lacking in some fundamental information about the early universe that skews all our theories.

New study claims to have detected dark matter inside the Milky Way

Milky Way gamma radiation theorized to represent dark matter
Click for original image.

The uncertainty of science: A Japanese astronomer, Tomonori Totani, yesterday published a paper claiming he had detected gamma ray radiation surrounding the center of the Milky Way that matches perfectly the predicted location of the galaxy’s dark matter halo, thus being the first direct detection of dark matter.

The graphic to the right shows that high energy gamma ray halo, as measured by the Fermi Gamma-ray Space Telescope. From the press release:

Using the latest data from the Fermi Gamma-ray Space Telescope, Professor Tomonori Totani from the Department of Astronomy at the University of Tokyo believes he has finally detected the specific gamma rays predicted by the annihilation of theoretical dark matter particles. … “We detected gamma rays with a photon energy of 20 gigaelectronvolts (or 20 billion electronvolts, an extremely large amount of energy) extending in a halolike structure toward the center of the Milky Way galaxy. The gamma-ray emission component closely matches the shape expected from the dark matter halo,” said Totani.

The observed energy spectrum, or range of gamma-ray emission intensities, matches the emission predicted from the annihilation of hypothetical WIMPs, with a mass approximately 500 times that of a proton. The frequency of WIMP annihilation estimated from the measured gamma-ray intensity also falls within the range of theoretical predictions.

Totani says this gamma radiation is not easily explained by other phenomenon, which is why he assigns it to dark matter. Other scientists are not so sure:

David Kaplan, a professor in the department of physics and astronomy at Johns Hopkins University, said it’s difficult to trace emissions back to dark matter particles with any certainty because too much is still unknown about gamma rays. “We don’t even know all the things that can produce gamma rays in the universe,” Kaplan said, adding that these high-energy emissions could also be produced by fast-spinning neutron stars or black holes that gobble up regular matter and spit out violent jets of material.

As such, even when unusual gamma-ray emissions are detected, it’s often hard to draw meaningful conclusions, according to Eric Charles, a staff scientist at Stanford University’s SLAC National Accelerator Laboratory. “There’s a lot of details we don’t understand,” he said, “and seeing a lot of gamma rays from a large part of the sky associated with the galaxy — it’s just really hard to interpret what’s going on there.” [emphasis mine]

In other words, this claim is hardly proven, and in fact should not at this point be taken very seriously. Totani has detected emissions that need explaining, but to immediately attach the gamma radiation to dark matter is risky.

Thirty Meter Telescope is finally considering a move to the Canary Islands

The consortium that has been trying to build the Thirty Meter Telescope (TMT) in Hawaii for more than two decades but has been blocked by native Hawaiian DEI activists, announced on November 11, 2025 that it has finally decided to consider seriously the $740 million offer by the Spanish government is to move the telescope to the Canary Islands.

TMT International Observatory LLC (TIO LLC) announced today that in response to the generous offer from the Spanish Ministry of Science, it is exploring a promising avenue for a new observatory based in Spain.

While the Members of TIO LLC continue discussions regarding the TMT site, this represents a prospective opportunity to allow TIO LLC to proceed with the TMT project. For this reason, TIO LLC will jointly develop with the Ministry of Science, Innovation and Universities a detailed roadmap toward the potential realization of the TMT at the Observatorio del Roque de los Muchachos (La Palma, Spain).

TMT was about to start construction in 2015, with a completion date expected by 2020. Instead, its construction was blocked by native Hawaiian leftist activists, aided by the support of the Democrats who control Hawaii’s government. Meanwhile, the astronomers in charge of TMT, being modern DEI-trained academics themselves, were generally unwilling to fight hard for their project. It has thus sat in limbo for a decade. Last year it was hit with a final blow within the U.S. when the National Science Foundation announced it would only fund the Giant Magellan Telescope in Chile, leaving TMT short of funds.

All of this remains the stuff of buggy-whips and horse-drawn carriages. Rather than spend billions on this giant ground-based telescope that will be seriously hampered first by the Earth’s atmosphere and second by the half-dozen-plus satellite constellations presently being launched, astronomers would be far smarter to spend that money on a new bigger replacement for the Hubble Space Telescope.

They aren’t, however, because their careers are grounded (literally) on this obsolete technology, and won’t change.

Meanwhile, the end of TMT in Hawaii signals the long-term end of astronomy in Hawaii. Those leftist activists are now in control, and they are outright hostile — to the point of bigotry — to any Western technology or any non-Hawaiians on their islands. They have been pushing to reduce the telescopes on Mauna Kea on the Big Island, and have had some success. Expect them to push harder to remove more in the coming years.

NASA releases images during Osiris-Apex’s fly-by of Earth in late September

Earth as seen by Osiris-Apex
Click for original image.

NASA today released photos taken by the asteroid probe Osiris-Apex (formerly Osiris-Rex) as it swung past the Earth on September 23, 2025 at a distance 2,136 miles, on its way to the asteroid Apophis.

The picture to the right, cropped, reduced, and sharpened to post here, was one of about 424 images taken by the spacecraft during the fly-by. From those, scientists compiled a movie, which you can view here. As this picture shows, South America was in view on the right side of the Earth.

Osiris-Apex, which had already completed its prime mission by returning samples from the asteroid Bennu, is scheduled to arrive at Apophis shortly after that asteroid’s close fly-by of the Earth on April 13, 2029. The Trump administration had threatened to shut it down for budget reasons, but Congress restored those funds in ending the government shut down.

At that time Apophis will zip past only 20,000 miles from Earth. There will be no chance of collision. Nor is there much chance Apophis will hit the Earth in the next two centuries. Its orbit however makes it a potentially dangerous asteroid, and that 2029 fly-by could change these calculations.

Webb captures spiraling shells around massive binary star system

Webb's false color image of shells
Click for original.

Using the Webb Space Telescope, astronomers have been able to produce a reasonably detailed map of the four shells that surround a triple-star system of two massive Wolf-Rayet (W-R) stars and an as-yet unseen supergiant, produced by the interaction of the winds that come off the two W-R stars combined with the interaction of the third.

The image to the right is that Webb false-color infrared image, combined with the data from the ground-based Very Large Telescope in Chile. It has been reduced to post here. The researchers have also produced a 3D simulation mapping out those shells, which you can view here.

The scientists have dubbed this system Apep after the Egyptian god of chaos. From the conclusion of the research paper [pdf]:

We imaged the colliding-wind W-R binary Apep with [Webb] and [the Very Large Telescope]. The JWST images detected four concentric dust shells with highly regular and detailed structures surrounding Apep. The mean expansion speed of the dust shells is 90 ± 4 mas yr−1 and the mean spacing between neighboring shells is 17.30″ ± 0.17″ [in degree seconds]. The shell spacing and expansion speed together suggest an orbital period of 193 ± 11 years, which is independent of uncertainties on the distance, and that the dust structure observed was produced over the past 700 years.

It is believed that Wolf-Rayet stars are primary candidates to eventually go supernova. The data for this system also suggests this system could produce a gamma ray burst as well. At present the astronomers estimate the distance to this system to be about 15,000 light years, which means such an explosion would likely poses no risk to us. It would however give scientists a great view of the event, better by many magnitudes compared to previous such explosions.

NASA releases numerous images of interstellar Comet 3I/Atlas

Comet 3I/Atlas as seen by Mars Reconnaissance Orbiter

NASA yesterday released a slew of images of interstellar Comet 3I/Atlas, taken by numerous in-space probes at Mars and elsewhere.

The picture to the right, cropped to post here, is probably the one with the most detail, taken by Mars Reconnaissance Orbiter (MRO) from Mars orbit on October 2, 2025. In addition, images were captured by:

None of these pictures show the comet in any great detail. All however confirm once again that it is a comet, not an interstellar alien spacecraft as some idiots in academia have been proposing wildly. The Maven observations in ultra-violet wavelengths for example identified hydrogen and other isotopes coming off the comet as it is heated by the Sun. MRO’s image to the right once again showed the comet’s coma and tail.

Above all, these observations were great engineering experiments for all the science teams, demonstrating that they could point their instruments in an unplanned direction and capture a very faint object quite far away.

Katalyst picks Northrop Grumman’s Pegasus rocket to launch its Swift rescue mission

Katalyst's proposed Swift rescue mission
Katalyst’s proposed Swift rescue mission.
Click for original image.

The orbital repair startup Katalyst yesterday announced it has chosen Northrop Grumman’s air-launched Pegasus rocket to launch its mission to rescue NASA Gehrels-Swift space telescope.

Unlike typical launch campaigns that take up to 24 months, Katalyst has under eight months to get its LINK spacecraft on orbit to rescue Swift. Swift’s orbital decay demands an urgent mission, launching before atmospheric drag makes recovery impossible. Pegasus is the only system that can meet the orbit, timeline, and budget simultaneously.

Swift’s orbit at 20.6° inclination is difficult to reach from U.S. launch sites, where most small rockets are limited by launch site to inclinations above ~27°. Pegasus, carried aloft by Northrop Grumman’s L-1011 Stargazer aircraft and released midair at 39,000 feet, offers the flexibility to launch from virtually anywhere on Earth, making it one of the few viable systems capable of achieving Swift’s orbit on a highly compressed timeline.

This plan has numerous unusual aspects. First, the decision by NASA in September 2025 to pick Katalyst was a surprise. The company is new, and has never actually flown a repair mission yet. It got the contract basically because it could quickly reshape its first planned demo mission into a Swift repair mission.

Second, Pegasus was originally created in the 1980s as a low-cost rocket by the company Orbital Sciences (now part of Northrop Grumman). Though it initially undercut the prices of the existing rocket companies, in the long run it failed to offer a viable option. It hasn’t launched in almost five years, and has only been used five times in the past sixteen years. Northrop Grumman stopped making it years ago, and presently only has this one last rocket in its warehouse.

Finally, saving Gehrels-Swift is critical. It has been one of NASA’s most successful relatively low-cost space telescopes, designed to quickly target high energetic events like gamma ray bursts in order to capture the optical component of the blast. Its orbit is fast decaying and if not raised it will burn up in the atmosphere by 2029. To save it however requires a unique and improvised solution as it has no grapple attachment. Katalyst’s rescue spacecraft ““will rely on a custom-built robotic capture mechanism that will attach to a feature on the satellite’s main structure–without damaging sensitive instruments.”

To put it mildly, in many ways this might be one of the most daring NASA missions ever flown.

Comet C/2025 K1 — NOT interstellar 3I/Atlas — breaks up as it passes closest to the Sun

The broken apart nucleus of Comet 3I/Atlas
Click for original image.

CORRECTION: I originally posted this story thinking the comet imaged was the interstellar Comet 3I/Atlas. It is not. It is a different one. I have changed to post below to correct my error.

——————
Sometime on November 11, 2025, the nucleus of interstellar C/2025 K1 broke into three pieces as it passed through its closest and hottest point to the Sun.

The image to the right, cropped and reduced to post here, comes from images of the break-up taken by the Virtual Telescope project, which gathers data from many small telescopes remotely.

From the first link, translated by Google from the Italian:

Its trajectory led it, in early October, to pass through a point of minimum distance from the Sun (perihelion) quite close to our star, about 0.33 astronomical units, just outside the orbit of Mercury. Because of this “short” distance from the Sun, it experienced high solar irradiation, which caused a significant increase in the temperature of the surface and internal layers of the nucleus.

These are precisely the conditions under which a “breakup” event is expected: depending on the internal properties of the nucleus—namely, its porosity, its state of cohesion, its composition, and the percentage of ice—it is possible that the increase in temperature could cause significant “outgassing,” a sudden and violent outflow of gaseous and dusty material, and the consequent fragmentation of the nucleus, sometimes into a few pieces of roughly similar size, sometimes into a cloud of fragments and debris that spread along the trajectory of the original comet.

…”From an initial quick analysis of the images, we can confirm that there are certainly two fairly similar pieces, whose brightness maxima are separated by approximately 2,000 km (distance projected on the star field); “Furthermore, we can intuit the presence of a third, smaller and fainter fragment to the left of the pair,” observes Mazzotta Epifani.

It will be interesting to see if the same thing happens to interstellar Comet 3I/Atlas as it makes its own pass close to the Sun.

The earliest observations ever of a supernova exploding suggest the blast was bi-polar

Figure 4 from the paper
Click for full graphic. CSM stands for the
circumstellar matter that surrounded the star
prior to eruption.

Using the Very Large Telescope in Chile, astronomers were able to observe a supernova in its very earliest moments after eruption, the earliest yet, and determined the eruption did not flow outward in all directions, but appeared to be bi-polar, as indicated by the cartoon to the right.

To capture the snapshot of the April 2024 supernova, astronomers used the European Southern Observatory’s Very Large Telescope in Chile, which was able to look at the polarization, or orientation, of the supernova’s light. Using a technique called spectropolarimetry, the researchers used the light’s polarization to re-create the explosion’s shape in its first moments. Their results showed that the light emanated not uniformly, like the light from a typical star, but elongated, shaped like an olive.

You can read their paper here. The cartoon comes from Figure 4, and is their “most plausible” interpretation of the data.

This bi-polar shape suggests that in the initial stages of the eruption the material shot out the star’s poles, as seen routinely in planetary nebulae as well as other eruptive stars like Eta Carina. The data also suggests the initial explosion was shaped by the circumstellar material surrounding the star. Such material tends to concentrate at a star’s ecliptic, like our solar system, With less material at the poles, the initial blast favored those directions.

Theorists will now use this data point to better refine the models that attempt to explain how supernovae explode.

Webb tracks volcanic eruptions on Io

Different Webb infrared detections of Io over time
Click for original image.

Using the Webb Space Telescope, scientists have tracked two different volcanic eruptions on Io that too place from 2022 to 2023, detecting sulfur monoxide both from those eruptions as well as sulfur from the magnetic plasma torus produced as the planet travels through Jupiter’s strong magnetic field. From the paper’s abstract:

Volcanic thermal emission was detected from Loki Patera and Kanehekili Fluctus [two volcanic vents]. The main changes in the shape of the thermal emission spectra since [Webb] observed Io in November 2022 were consistent with the continued cooling of emplaced lava flows in the Kanehekili Fluctus region, and the crust that had formed on the surface of the lava lake in Loki Patera. Images of Io in the SO 1.707 μm emission band [sulfur monoxide] show a concentration above Kanehekili Fluctus and in two regions in the northern hemisphere. The emissions are sourced from SO molecules ejected from volcanic vents. We further detected, for the first time, sulfur line emissions at 1.08 and 1.13 μm. These emissions are distributed homogeneously across a band in Io’s northern hemisphere. They are mainly produced through excitation by electrons from the plasma torus, penetrating Io’s atmosphere.

The top image to the right shows the heat signature above the two volcanoes, one to the southwest and the second to the northeast. The middle image shows the sulfur monoxide emissions detected by Webb above those volcanoes from their on-going eruptions. The bottom image shows the more diffuse sulfur emissions, mostly in the northern hemisphere, believed produce by interactions with the plasma torus.

This research also relied on data obtained by both the Keck telescopes in Hawaii and the Hubble Space Telescope.

There are of course uncertainties with these results. For example, the conclusion that the more diffuse sulfur is produced by interactions with the plasma torus is not as certain. First, those sulfur emissions still appear closely linked to the volcanoes, which suggests this still could be a source.

Second, the observations also cover only two data points in time, in 2022 and 2023. To get a more precise map of the activity on Io we really need an orbiter there observing the planet on a continuous basis, something that is at this time impossible, not only because no mission is planned but because the hostile radiation environment this close to Jupiter makes the engineering quite challenging. It is this reason why Europa Clipper is not going into orbit around Europa when it arrives there in 2031. Better to orbit Jupiter and only periodically dip into that harsh radiation environment.

Webb captures spectacular false-color image of planetary nebula

The Red Spider Nebula
Click for original image.

Cool image time! The picture to the right, reduced to post here, was taken by the Webb Space Telescope and released this week by the European Space Agency (ESA). It shows in the near-infrared what the scientists have labeled “The Red Spider Nebula”, a planetary nebula of eruptive gases formed near the end of a star’s life.

Webb’s new view of the Red Spider Nebula reveals for the first time the full extent of the nebula’s outstretched lobes, which form the ‘legs’ of the spider. These lobes, shown in blue, are traced by light emitted from H2 molecules, which contain two hydrogen atoms bonded together. Stretching over the entirety of NIRCam’s field of view, these lobes are shown to be closed, bubble-like structures that each extend about 3 light-years. Outflowing gas from the centre of the nebula has inflated these massive bubbles over thousands of years.

Gas is also actively jetting out from the nebula’s centre, as these new Webb observations show. An elongated purple ‘S’ shape centred on the heart of the nebula follows the light from ionised iron atoms. This feature marks where a fast-moving jet has emerged from near the nebula’s central star and collided with material that was previously cast away by the star, sculpting the rippling structure of the nebula seen today.

It is theorized that a not yet detected second star circles the primary, with both acting as the blades in a blender to mix the gases and help produce these shapes.

Be sure to click on the image to see the full resolution version. It shows the details in the central region much more clearly.

New data supports theory of dark matter, but suggests inexplicably that it acts differently depending on the galaxy’s mass

The uncertainty of science: Astronomers analyzing twelve small and faint galaxies have determined that the existence of some form of mysterious undetected dark matter is necessary to explain the motions of their stars, and that another theory dubbed MOND that would make dark matter unnecessary fails to explain the data.

The authors found that the galaxies’ internal gravitational fields cannot be explained by visible matter alone, and that MOND predictions fail to reproduce the observed behaviour. They then compared their results with theoretical models that assume instead that these galaxies are surrounded by a massive halo of dark matter. Run on the UK’s DiRAC National Supercomputer facility, these dark matter models gave a much better match to the data.

Sounds good, eh? Not so fast. The research also found that large and small galaxies inexplicably interact with gravity and dark matter differently.

The research, published in Astronomy & Astrophysics, also challenges a long-standing assumption about how galaxies behave. Astronomers have long believed there is a simple link between the amount of visible matter in a galaxy and the strength of the gravitational pull it produces – known as the “radial acceleration relation.” While this relationship still holds for larger systems, the new study shows that it starts to break down in the smallest galaxies.

In other words, we don’t know enough yet to really explain the formation and behavior of galaxies. This really isn’t surprising, considering the time scales involved (billions of years) and the distances (millions to billions of light years).

Betelgeuse’s long predicted companion star confirmed

The image released in July 2025
The image of the companion, released previously
in July 2025.

Astronomers have now confirmed prior observations announced in July 2025 of Betelgeuse’s long predicted companion star.

The July conclusions found faint evidence of the companion, shown to the right, from data collected by the Gemini telescope in Hawaii, when the modeling said the companion was at its farthest point from the central star.. This new research was based on new observations in December 2024 by the Hubble and Chandra space telescopes, taken at the same time.

During this ideal observational window, the Gemini North Telescope in Hawaii captured a faint image near Betelgeuse that could be its tiny companion. In a separate study, the Carnegie Mellon-led team used Chandra to collect X-ray data to determine the nature of the mysterious object. “It could have been a white dwarf. It could have been a neutron star. And those are very, very different objects,” O’Grady said. “If it was one of those objects, it would point to a very different evolutionary history for the system.”

But it wasn’t either. O’Grady and her collaborators found no evidence of accretion — a hallmark of compact objects like neutron stars or white dwarfs. Their findings, to be published in The Astrophysical Journal, point instead to a young stellar object roughly the size of the Sun. A companion paper from researchers at the Flatiron Institute, using Hubble data, helped narrow down the companion’s size.

You can read their paper here [pdf]. It estimates the companion to have a mass about 1.4 to 2 times that of the Sun.

The second known asteroid discovered orbiting closer to the Sun than Venus

Using ground-based telescopes scanning the morning and evening sky, an astronomer has discovered only the second known asteroid circling the Sun within the orbit of Venus.

The manner of the discovery itself, by Scott Sheppard of the Carnegie Institution, also illustrated our modern world.

He first observed it using the Cerro Tololo Dark Energy Camera the night before leaving on a hiking trip. Because the object was moving fast, he knew it must be very close to the Sun, so he’d need to image it again and soon to confirm its orbit before it became lost in the Sun’s glare.

“I had to schedule new observations to re-observe the object while deep in the forest of Pennsylvania,” he says. “It is just amazing that even camp sites today have good Wi-Fi access — that allowed me to download the new second observations of this asteroid and determine its unique orbit that is interior to Venus.”

Astronomers have found so few asteroids close to the Sun because the Sun’s glare makes observations difficult. Some scientists like to speculate to the press that there could be a large unknown population, with some posing a threat to Earth. The computer predictions however say the population is small, because the push of the Sun’s light and radiation should easily shift their orbits outward or make them unstable.

The two asteroids so far found confirm these models in a counter-intuitive way. The new asteroid is estimated to be a little less than a half mile across, while the previously discovered asteroid is thought to have a diameter of more than a mile. Their larger size makes it harder for the Sun’s light and radiation to shift their orbit.

In other words, this inner population of asteroids is likely to be low in number, but made up of larger objects.

Faced with loss of the federal gravy train, Lowell Observatory makes major changes

According to a press release last week, the Lowell Observatory in Arizona is now making major changes to it management and operations due to “declines in federal research funding.”

The new framework centers on two defining pursuits: Planetary Defense, safeguarding our world from cosmic hazards, and Exoplanetary Research, seeking to understand distant worlds and the potential for life beyond Earth.

Declines in federal research funding, coupled with uncertainty about future national priorities, have impacted research institutions across the country. At the same time, Lowell’s historic reliance on internal funding to sustain research is no longer a viable long-term model. To ensure stability and growth, the Observatory will focus its efforts on key scientific areas while building new endowments to support the scientists and technology that drive discovery.

Essentially, it can no longer depend on easy federal cash (thank you Donald Trump!), and thus needs to actually do real research work in fields that others consider important. It will also abandon its “traditional academic tenure system.” Scientists who use the facility will now have to earn that right, in a case-by-case basis. And such researchers will have to be funded by “private, endowed support.”

In other words, Lowell is returning to the model that had been used by American researchers for most of the nation’s history, until World War II, getting their funding from private sources rather than the federal teat.

We should expect therefore the work at Lowell to become more effective and focused, something it has not been for decades.

Astronomers take first radio image of the supermassive binary system OJ287

First image of OJ287

Using archive data from the now retired Russian orbiting radio telescope RadioAstron, scientists have now obtained the first image of the binary supermassive black hole system OJ287 that was previously detected flaring as predicted when the smaller black hole (150 million solar masses) circled near the larger (18 billion solar masses).

That image is to the right, cropped and annotated to post here. The cartoon in the lower right shows the theorized orientation of the system, taken from figure 2 of the published paper [pdf]. According to the paper the elongation of the three objects is an artifact of the data and is “not real.” From the press release:

In this latest study, the astronomers compared the earlier theoretical calculations with a radio image. The two black holes were there in the image, just where they were expected to be. This gave the researchers an answer to a question that has been open for 40 years: whether black-hole pairs exist in the first place. “For the first time, we managed to get an image of two black holes circling each other. In the image, the black holes are identified by the intense particle jets they emit. The black holes themselves are perfectly black, but they can be detected by these particle jets or by the glowing gas surrounding the hole,” Valtonen says.

The researchers also identified a completely new kind of a jet emanating from a black hole. The jet coming out of the smaller black hole is twisted like a jet of a rotating garden hose. This is because the smaller black hole moves fast around the primary black hole of OJ287, and its jet is diverted depending on its current motion. The researches liken it to “a wagging tail” which should be seen twisting in different directions in the coming years when the smaller black hole changes its speed and direction of motion.

This image is cropped from the full dataset. The jet continues upward and then curves to the right as it “wags” away.

This incredible black hole binary system, estimated to be about 3.5 billion light years away, has been posited since 1982, when one astronomer noticed that it repeatedly flared every twelve years. Since then scientists have successfully predicted several flares, based on the system’s theorized orbit. These images further confirm the system’s shape.

A galaxy with a starburst ring within its nucleus

A galaxy with a starburst ring
Click for full image.

Cool image time! The picture to the right, cropped, reduced, sharpened, and annotated to post here, was released today by the science team of the Hubble Space Telescope as the picture of the week. This crop focuses on the central regions of this barred spiral galaxy, about 70 million light years away, with an unusual extra feature, a starburst ring encircling its nucleus. From the caption:

NGC 6951’s bar may be responsible for another remarkable feature: a white-blue ring that encloses the very heart of the galaxy. This is called a circumnuclear starburst ring — essentially, a circle of enhanced star formation around the nucleus of a galaxy. The bar funnels gas toward the centre of the galaxy, where it collects in a ring about 3800 light-years across. Two dark dust lanes that run parallel to the bar mark the points where gas from the bar enters the ring.

The dense gas of a circumnuclear starburst ring is the perfect environment to churn out an impressive number of stars. Using data from Hubble, astronomers have identified more than 80 potential star clusters within NGC 6951’s ring. Many of the stars formed less than 100 million years ago, but the ring itself is longer-lived, potentially having existed for 1–1.5 billion years.

This galaxy has also seen about a half dozen supernova, which raises the question: Does intense star formation trigger more supernovae? That is a question that can’t be answered with the data presently available.

Update on the plans to observe interstellar Comet 3I/Atlas using interplanetary spacecraft

Link here. The key take-away is that nothing is being repurposed to attempt to fly to Comet 3I/Atlas. Instead, as expected the science teams for all the Mars orbiters will turn their instruments to the comet when it is at its closest point to Mars, about 19 million miles away.

Don’t expect any Earth-shattering revelations:

The cameras on these spacecraft were designed to photograph the surface of Mars from Mars orbit, and won’t be able to pick out much detail on such a relatively small comet 30 million km away. But the cameras may be able to capture images of its long tail and also gather data that scientists can use to find out more about what 3I/ATLAS is made of.

Some spectroscopic data will be obtained, but it likely will not be much better than what Webb and other Earth-based telescopes have gotten already.

Similarly, the science team for Europe’s Juice mission, on its way to Jupiter, will take a look, but the distances and orbital positioning will likely limit what it can detect as well.

The growing mystery of the little red dots in the early universe

The uncertainty of science: A review of the population of what scientists call “Little Red Dots” (LRDs) — discovered in the early universe by the Webb Space Telescope — has found that 30% do not appear to be compact objects when viewed in ultraviolet wavelengths.

The team studied 99 LRDs, and found that about 30% are not simply compact dots when observed in the ultraviolet.Instead, they reveal disturbed or clumpy structures, in stark contrast to their smooth, point-like appearance at optical wavelengths. Because these galaxies are so far away, their optical light is stretched, or “redshifted,” into the long-wavelength channel of JWST, where the resolution is not sharp enough to see structure, so they look like simple dots.

Rinaldi: ‘But their ultraviolet light is shifted into JWST’s short-wavelength channel, where the telescope has much finer resolution, and there we suddenly see clumps, asymmetries, and signs of interaction. On top of this, in the spectra of some of our LRDs we directly detect the fingerprints of active black holes, with gas moving at thousands of kilometres per second.’ This shows that at least part of this population is powered by growing black holes, while others seem to be dominated by star formation, making LRDs a mixed and diverse family of sources. This is a crucial clue, suggesting that mergers and galaxy interactions may be the trigger for the “LRD phase”.

In other words, astronomers don’t really know what these dots are at present. If some are supermassive black holes, this poses a problem for Big Bang cosmology, as there should not have been enough time since the Big Bang for these black holes to have formed.

That 70% still appear to be compact single objects might mean that’s what they are, but it could also mean that our present observations tools don’t yet have the ability to resolve them.

Astronomers snap picture of a baby exoplanet

Baby planet
Click for original image.

Cool image time! The picture to the right, cropped to post here, was taken using Magellan Telescope in Chile and the Large Binocular Telescope in Arizona. The exoplanet is the small purple dot to the right of the star and the accretion ring that surrounds it.

This exoplanet is very young, only about five million years old, and is thus still accumulating material. Even so, its mass is presently estimated to be five times that of Jupiter.

Following [the first] observations of the system, researchers looked at WISPIT 2, and spotted the planet WISPIT 2b for the first time, using the University of Arizona’s MagAO-X extreme adaptive optics system, a high-contrast exoplanet imager at the Magellan 2 (Clay) Telescope at Las Campanas Observatory in Chile. This technology adds another unique layer to this discovery. The MagAO-X instrument captures direct images, so it didn’t just detect WISPIT 2b, it essentially captured a photograph of the protoplanet.

…In addition to discovering WISPIT 2b, this team spotted a second dot in one of the other dark ring gaps even closer to the star WISPIT 2. This second dot has been identified as another candidate planet that will likely be investigated in future studies of the system.

You can read the paper here [pdf]. The other candidate exoplanet is the bright spot below the star, inside the ring.

The technology of astronomy continues to advance.

1 2 3 74