Celestron to modify commercial amateur telescope for space use

Capitalism in space: Amateur telescope manufacturer Celestron has signed a deal to adapt one of its more expensive ground-based telescopes for use in space.

Trans Astronautica Corp. announced an agreement Sept. 27 with telescope manufacturer Celestron to develop a space-qualified version of the company’s Rowe-Ackermann Schmidt Astrograph (RASA) ground-based telescope. “We’ve been using Celestron’s RASA telescopes in our space domain awareness and asteroid prospecting systems, and we found them to be very affordable, high-quality optical systems,” Joel Sercel, TransAstra founder and CEO, told SpaceNews. “We looked at the designs and we realized it would not be that hard to adapt them for space use.”

Over the next year, TransAstra plans to modify the RASA telescope design and substitute materials to produce a telescope that can withstand radiation exposure, temperature swings, and the vibration and shock loads of space launch.

TransAstra provides tracking data on space junk to both the commercial and defense industry. It also has a new deal to use its telescopes to provide schools use of these telescopes for educational purposes. The goal is to put this capability into orbit.

The future ramifications however are profound. Once Celestron has a commercial relatively inexpensive telescope capable of operating in space (or on the Moon), it will not take long before customers begin lining up eager to buy and launch it. Think about it: though there will be engineering issues to overcome, the cost of placing one of these telescopes on one of the new commercial lunar landers for operation on the Moon will not be far beyond the budgets of many amateur astronomers, some of whom spend hundreds of thousands of dollars on their own ground-based observatories.

First ground-based telescope view of DART impact on Dimorphus

LICIACube Explorer image of DART impact

We now have the first ground-based images of the DART impact on the 525-foot-wide asteroid Dimorphus yesterday, captured by the Hawaiian telescope ATLAS.

You need to watch the video of the full sequence of images, available here, to get a true sense of the impact. The cloud of material quickly expands to about twice the asteroid’s size, then dissipates away, with the remaining asteroid now appearing larger (?). That larger size could be caused by a remaining cloud of material that still needs to settle back to the surface.

More images have been released by a Chinese telescope. Also, the first images from the Italian cubesat LICIACube Explorer, flying in parallel with DART, have been released. I have posted one to the right. The large blob near the center is the parent half-mile-wide asteroid, Didymos. Dimorphus is buried in the debris cloud above and slightly to the right.

Hat tip stringer Jay for the links to these images.

DART hits Dimorphus

Didymos and Dimorphus

Dimorphus

The surface of Dimorphus

The probe DART today successfully impacted the small 525-foot-wide asteroid Dimorphus. From the data produced engineers will calculate how much that impact changed Dimorphus’ orbit around it parent asteroid, half-mile-wide Didymos.

The three images to the right give a sense of the approach and impact.

The first, at 2 minutes and 30 seconds from impact, shows Didymos in the left bottom corner. You can actually see individual boulders on its surface. At this distance and resolution is is unclear whether it is a rubble pile or a more solid body. Dimorphus is no longer a mere dot, but no surface features can yet be discerned.

The second image, only seventeen seconds before DART crashed into Dimorphus, shows us the entire asteroid. Though it appears to be a pile of rocks, it also appears less of a rubble pile than both Ryugu and Bennu, visited by probes in 2019 and 2020. Those rubble-piles had almost no smooth surface areas. Dimorphus however at this distance and resolution does appear to have a lot of areas where the surface is relatively smooth, suggesting its structure is more solid than a rubble pile.

At only 525 feet across, some of those bigger boulders are about 50 to 60 feet in diameter.

The white dot in the center of Dimorphus marks the rocks seen in the third image, taken about five seconds before impact. At this resolution so close to the surface, it appears the smooth areas are actually made up of many tiny pebbles and dust.

The biggest rock in the center of the picture is probably between ten to twenty feet in diameter.

The primary data from this mission will not be available for a few weeks. Scientists have to observe both asteroids to see how much, if at all, Dimorphus’s orbit was shifted by the impact. Also, the images from the Italian cubesat, LICIACube Explorer, which was flying parallel to DART and taking pictures of the impact, plume, and back side of Dimorphus, won’t be available until later this week. Those images should give us a measure of the spacecraft’s effect on the asteroid. They will also reveal a lot more about the asteroid’s geology.

A galaxy slowly being eaten by its black hole

Spiral galaxy
Click for full image.

Cool image time! The photo to the right, rotated and reduced to post here, was taken by the Hubble Space Telescope. From the caption:

NGC 5495, which lies around 300 million light-years from Earth in the constellation Hydra, is a Seyfert galaxy, a type of galaxy with a particularly bright central region. These luminous cores — known to astronomers as active galactic nuclei — are dominated by the light emitted by dust and gas falling into a supermassive black hole. This image is drawn from a series of observations captured by astronomers studying supermassive black holes lurking in the hearts of other galaxies.

Essentially Seyfert galaxies are galaxies whose central supermassive black hole has become dominant, large enough that its gravity is slowly eating up the rest of the galaxy. As it increasingly swallows stars and gas, the black hole emits more and more energy, thus becoming an active galactic nuclei.

Two stars from our own galaxy also dominate this picture, one inside and to the right of the galaxy’s center, and the other the bright star at the bottom of the picture, both identified by the diffraction spikes.

Webb’s first infrared image of Neptune

Webb's infrared view of Neptune
Click for full image.

The science team for the James Webb Space Telescope today released that telescope’s first infrared image of Neptune.

That image is to the right, cropped and reduced slightly to post here. It is, as the press release touts, the best view in decades of Neptune’s rings. From the caption:

The most prominent features of Neptune’s atmosphere in this image are a series of bright patches in the planet’s southern hemisphere that represent high-altitude methane-ice clouds. More subtly, a thin line of brightness circling the planet’s equator could be a visual signature of global atmospheric circulation that powers Neptune’s winds and storms. Additionally, for the first time, Webb has teased out a continuous band of high-latitude clouds surrounding a previously-known vortex at Neptune’s southern pole.

The dots around the gas giant are the heat signatures of seven of its fourteen moons.

Webb instrument has technical issue partly preventing its use

Because a an issue with the mid-infrared instrument (MIRI) on the James Webb Space Telescope, the telescope’s engineering team has paused use of that instrument while it reviews the situation.

On Aug. 24, a mechanism that supports one of these modes, known as medium-resolution spectroscopy (MRS), exhibited what appears to be increased friction during setup for a science observation. This mechanism is a grating wheel that allows scientists to select between short, medium, and longer wavelengths when making observations using the MRS mode. Following preliminary health checks and investigations into the issue, an anomaly review board was convened Sept. 6 to assess the best path forward.

The Webb team has paused in scheduling observations using this particular observing mode while they continue to analyze its behavior and are currently developing strategies to resume MRS observations as soon as possible. The observatory is in good health, and MIRI’s other three observing modes – imaging, low-resolution spectroscopy, and coronagraphy – are operating normally and remain available for science observations.

I am quoting almost entirely NASA’s short announcement. The announcement is vague, confusing, and (quite typically) written to minimize the reality of the issue. I can’t figure out how MIRI’s other observing modes are available if they have paused use of a mechanism that allows them to choose modes.

Regardless, Webb is awful young to have this kind of problem.

Interstellar clouds backlit by nearby massive star

Interstellar clouds backlit by nearby massive star
Click for full image.

Cool image time! The photo to the right, cropped and reduce to post here, was taken by the Hubble Space Telescope of what astronomers believe is a newly formed massive star about 9,000 light years away that has periodically spewed out material during eruptions.

The scientists hope to use Hubble to determine the speed in which this material is flying away from the star by taking pictures at intervals and then measuring the amount of change from image to image. This data will also allow the scientists to better gauge the distance to this star, as well as its actual mass, information that will help them better understand what is happening.

I highlight this picture however simply because of its beauty. The interstellar clouds on the left are all apparently backlit by the brightest star on the right, and thus their shape is easy to perceive.

Webb takes its first infrared image of Mars

Webb's first infrared image of Mars
Click for full image.

Astronomers have now released the the James Webb Space Telescope’s first infrared image of Mars, taken on September 5, 2022.

The image to the right, cropped and reduced to post here, shows some of the data obtained. Because Mars is so close, it is actually too bright for Webb’s instruments. To get any data, the exposures were very very short, and still the brightest areas — as indicated by large areas of yellow — are overexposed. The cause of the different brightness of Hellas Basin, however, is not simply because the basin — the deepest point on Mars — is cooler.

As light emitted by the planet passes through Mars’ atmosphere, some gets absorbed by carbon dioxide (CO2) molecules. The Hellas Basin – which is the largest well-preserved impact structure on Mars, spanning more than 1,200 miles (2,000 kilometers) – appears darker than the surroundings because of this effect. “This is actually not a thermal effect at Hellas,” explained the principal investigator, Geronimo Villanueva of NASA’s Goddard Space Flight Center, who designed these Webb observations. “The Hellas Basin is a lower altitude, and thus experiences higher air pressure. That higher pressure leads to a suppression of the thermal emission at this particular wavelength range [4.1-4.4 microns] due to an effect called pressure broadening. It will be very interesting to tease apart these competing effects in these data.”

The NASA press release says the scientists are preparing a paper analyzing the spectral data and what it revealed about “dust, icy clouds, what kind of rocks are on the planet’s surface, and the composition of the atmosphere,” I suspect however that Webb’s capabilities for studying Mars are much more limited than implied, and that it will over time take much fewer images of the red planet, compared to Hubble.

New theory: Saturn’s rings came from a lost and destroyed moon

The uncertainty of science: According to a new computer simulation, scientists have proposed that the reason Saturn’s rings are tilted 27 degrees is because they were created by the destruction of a moon 160 million years ago, an event that was also linked to the way the orbits of Saturn and Neptune interact, combined with the on-going slow evolutionary changes in Titan’s orbit around Saturn.

Wisdom and his colleagues believe Saturn acquired its tilt because of a peculiar synchronicity: the precession of Saturn’s spin axis—the way it wobbles like a top with a particular rhythm—is suspiciously in tune with a precession in Neptune’s orbit. If Saturn and Neptune were trapped in this resonance, Saturn’s tilt would be “kind of vulnerable to other forces that could cause it to change,” says Rola Dbouk, an MIT graduate student in planetary science. In 2020, Cassini scientists discovered what the study team thinks is that external stimulus: Titan, Saturn’s largest moon, is migrating away from Saturn by 11 centimeters a year. In a study published today in Science, Dbouk, Wisdom, and colleagues show how Titan’s migration, in combination with the Saturn-Neptune resonance, could have ratcheted up Saturn’s tilt over the course of 1 billion years.

The work also yielded a potential explanation for the origin of Saturn’s rings. Using Cassini’s measurements of Saturn’s gravitational fields to model the planet’s interior structure, the researchers refined calculations for the wobble of Saturn’s spin axis and found it is no longer in sync with Neptune. “Something kicked it out of the resonance,” Dbouk says. They first ruled out the possibility that chaotic changes in the orbits of some of the largest of Saturn’s dozens of moons could be responsible. But when they added another moon to the mix, things got interesting.

In simulations, the researchers included an object about the size of Iapetus, Saturn’s third largest moon, orbiting about 43 Saturn radii out—between the orbits of Titan and Iapetus. They found this moon could have provided the necessary nudge to the resonance if it were suddenly knocked from its orbit because of chaotic interactions with its neighbors about 160 million years ago.

To say that this theory is uncertain is no different that saying the sky is blue. It is so uncertain that it is difficult to take it seriously. It could be right, but as one scientist quoted at the article noted, there is no way to test it.

Overlapping galaxies

Overlapping galaxies, as seen by Hubble
Click for full image.

Cool image time! The picture to the right, cropped and reduced to post here, was taken by astronomers using the Hubble Space Telescope, and captures two galaxies that happen to overlap in their line of sight to Earth.

The two galaxies, which have the uninspiring names SDSS J115331 and LEDA 2073461, lie more than a billion light-years from Earth. Despite appearing to collide in this image, the alignment of the two galaxies is likely just by chance — the two are not actually interacting.

This image was taken as part of the citizen-scientist project dubbed Galaxy Zoo, whereby volunteers review lower resolution images of strange-looking galaxies and propose the best for Hubble higher resolution imaging.

Astronomers propose method for predicting the stars that will go supernovae

The uncertainty of science: Using a computer model based on the most recent data that suggests red supergiant stars like Betelgeuse are the kind of stars that produce certain kinds of supernovae, astronomers now think they have a method for predicting which of those stars are about to go supernovae.

You can read the science paper here. From the link above:

In a few examples, astronomers have looked back at old catalogs and found images of the stars before they exploded, and they all seem to be red supergiants like Betelgeuse. That’s a clear indication that those kinds of stars are supernova candidates, ready to go off at a moment’s notice.

The stars that result in these kinds of supernovas are thought to have dense shrouds of material surrounding them before they explode. These shrouds are orders of magnitude denser than what’s measured around Betelgeuse.

More importantly, the data suggests that once this shroud of material forms, the supernova will follow, in just a few years. As the scientists conclude in their paper:

The final overarching conclusion we can make from this work is that, shortly before core-collapse, [red supergiants] must undergo some prodigious mass-losing event which radically alters the appearance of the star. Therefore, the signature of an imminent explosion should be a dramatic change in the progenitor stars’ optical – near-IR photometry on timescales of less than a month. Such a signature should be detectable in the coming era of wide-field short cadence photometry. [emphasis mine]

Near-IR (infrared) photometry is exactly in the wavelengths in which the James Webb Space Telescope operates. Thus, if it is lucky and sees this kind of star in an image, and a supernova follows shortly thereafter, this theory will have been proven correct.

Inouye Solar Telescope begins science operations

The National Science Foundation yesterday announced the inauguration of science operations of the Daniel K. Inouye Solar Telescope in Hawaii.

The sample first images provided at the link are excellent, but rather than show this telescope’s abilities, they instead illustrate the absurdity of spending millions to build a ground-based telescope. None compare with the spectacular high resolution solar images being produced today from the myriad of solar telescopes in space.

Moreover, the history of this telescope tells us much about the bankrupt nature of all modern government projects:

Over 25 years ago, the NSF invested in creating a world-leading, ground-based solar observatory to confront the most pressing questions in solar physics and space weather events that impact Earth. This vision, executed by the Association of Universities for Research in Astronomy (AURA) through the NSF’s National Solar Observatory (NSO), was realized during the formal inauguration of the Inouye Solar Telescope. [emphasis mine]

It took our modern incompetent federal government a quarter century to build this single telescope. Compare that with the construction of the solar telescopes it is replacing. They were conceived, designed, and built in much less than a decade back in the early 1960s. And cost less too.

The press release at the link also spends a lot of space touting “diversity” and “Native Hawaiian” cultural needs, which really have nothing to do with the study of the Sun. That focus tells us how misguided our government has become, and how it is using its coercive power to drag us all along down that foolish path towards hell.

Webb’s infrared view of the Tarantula Nebula

Two views of the Tarantula Nebula by Webb
Click for original image.

The two images to the right, reduced and annotated to post here, were released today by the science team of the James Webb Space Telescope, and show two different views of the Tarantula Nebula, located 161,000 light years away in the Large Magellanic Cloud.

It is home to the hottest, most massive stars known. Astronomers focused three of Webb’s high-resolution infrared instruments on the Tarantula. Viewed with Webb’s Near-Infrared Camera (NIRCam) [top], the region resembles a burrowing tarantula’s home, lined with its silk. The nebula’s cavity centered in the NIRCam image has been hollowed out by blistering radiation from a cluster of massive young stars, which sparkle pale blue in the image. Only the densest surrounding areas of the nebula resist erosion by these stars’ powerful stellar winds, forming pillars that appear to point back toward the cluster. These pillars contain forming protostars, which will eventually emerge from their dusty cocoons and take their turn shaping the nebula.

…The region takes on a different appearance when viewed in the longer infrared wavelengths detected by Webb’s Mid-infrared Instrument (MIRI) [bottom]. The hot stars fade, and the cooler gas and dust glow. Within the stellar nursery clouds, points of light indicate embedded protostars, still gaining mass. While shorter wavelengths of light are absorbed or scattered by dust grains in the nebula, and therefore never reach Webb to be detected, longer mid-infrared wavelengths penetrate that dust, ultimately revealing a previously unseen cosmic environment.

As with all images from Webb, these are false color, as the telescope views the infrared heat produced by stars and galaxies and interstellar clouds, not the optical light our eyes see. Thus, the scientists assign different colors to the range of wavelengths each instrument on Webb captures.

These photos once again illustrate Webb’s value. It will provide a new layer of data to supplement the basic visual information provided by the Hubble Space Telescope, allowing scientists to better understand the puzzles we see in the optical.

Webb obtains first direct infrared images of exoplanet

Webb's first infrared images of an exoplanet
Click for original image.

Using four different infrared instruments on the James Webb Space Telescope, astronomers have obtained the first infrared images of a gas giant with a mass about six to twelve times larger than Jupiter and circling about 100 times farther from its sun.

The montage to the right shows these four images. The white star marks the location of this star, the light of which was blocked out to make the planet’s dim light visible. The bar shapes on either side of the planet in the NIRCam images are artifacts from the instrument’s optics, not objects surrounding the planet.

This is not the first direct image of an exoplanet, as the Hubble Space Telescope has already done so, and done it in the visible spectrum that humans use to see. However, Webb’s infrared images provide a great deal of additional detail about this planet and its immediate surroundings that optical images would not. For example, the MIRI images appear to show us the outer atmosphere of this gas giant.

Webb’s infrared view of a face-on spiral galaxy

M74, as seen by Webb and Hubble combined
Click for original image.

Using the James Webb Space Telescope, astronomers have produced a false-color infrared view of M74, a face-on spiral galaxy located 32 million light years away.

The montage above shows that image to the right, with a Hubble optical image to the left. In the center both images are combined.

The addition of crystal-clear Webb observations at longer wavelengths will allow astronomers to pinpoint star-forming regions in the galaxies, accurately measure the masses and ages of star clusters, and gain insights into the nature of the small grains of dust drifting in interstellar space.

Because infrared can see through cold dust, it provides a much sharper view of this galaxy’s central regions.

Webb detects carbon dioxide in atmosphere of exoplanet

Scientists using the James Webb Space Telescope have detected carbon dioxide in the atmosphere of a hot gas giant exoplanet about 700 light years away.

WASP-39 b is a hot gas-giant with a mass roughly one-quarter that of Jupiter (about the same as Saturn) and a diameter 1.3 times greater than Jupiter. Its extreme puffiness is partly related to its high temperature (about 900° Celsius or 1170 Kelvin). Unlike the cooler, more compact gas giants in our solar system, WASP-39 b orbits very close to its star – only about one-eighth the distance between the Sun and Mercury – completing one circuit in just over four Earth-days. The planet’s discovery, reported in 2011, was made based on ground-based detections of the subtle, periodic dimming of light from its host star as the planet transits or passes in front of the star.

Previous observations from other telescopes, including the Hubble and Spitzer space telescopes, revealed the presence of water vapour, sodium, and potassium in the planet’s atmosphere. Webb’s unmatched infrared sensitivity has now confirmed the presence of carbon dioxide on this planet as well.

This is only the beginning. Astronomers have told me repeatedly that the most important area of research in astronomy in the next few decades will be the study of known exoplanets and their make-up. Webb is now a new tool in that effort. Combined with other telescopes looking at other wavelengths scientists will be able to identify a whole range of molecules in the atmospheres of these transiting exoplanets. We will begin to get our first glimpse into what other solar systems are like.

Another Webb infrared image of Jupiter released

Jupiter as seen in the infrared by Webb
Click for original image.

The science team for the James Webb Space Telescope today released another infrared false-color image of Jupiter, this time processed for science instead of calibration of the telescope after launch.

That image is to the right, reduced to post here. From the caption:

Several exposures in three different filters were assembled to create this mosaic, after being corrected for the rotation of the planet. The combination of filters yields an image whose colors denote the height of the clouds and the intensity of auroral emissions.

The F360M filter (mapped to the red-orange colors) is sensitive to light reflected from the lower clouds and upper hazes. The red features in the polar regions are auroral emissions, caused by ions excited through collisions with charged particles at altitudes up to 1000 km above the cloud level. Auroral emission in red is evident in the northern and southern polar regions and reaches high above the limb of the planet. In the F212N filter (mapped to yellow-green colors), the gaseous methane in Jupiter’s atmosphere absorbs light; the greenish areas around the polar regions come from stratospheric hazes 100-200 km above the cloud level. The stratospheric haze that appears green in this composite is also concentrated in the polar regions, but extends down to equatorial latitudes and can also be seen along the limbs (edges) of the planet. The cyan channel holds the F150W2 filter, which is primarily sensitive to reflected light from the Jupiter’s deeper main cloud level at about one bar.

The Great Red Spot, the hazy equatorial region and myriad small storm systems appear white (or reddish-white) in this false-color image. Regions with little cloud cover appear as dark ribbons north of the equatorial region. Some dark regions — for example, those next to the Great Red Spot and in cyclonic features in the southern hemisphere — are also dark-colored when observed in visible wavelengths.

This image is part of the telescope’s early release science program.

Universe’s most massive star is found to be less massive than previously believed

The uncertainty of science: Using data from the Gemini South telescope in Chile, astronomers have determined that the universe’s most massive star, dubbed R136a1, is actually less massive than previously believed.

By pushing the capabilities of the Zorro instrument on the Gemini South telescope of the International Gemini Observatory, operated by NSF’s NOIRLab, astronomers have obtained the sharpest-ever image of R136a1 — the most massive known star. This colossal star is a member of the R136 star cluster, which lies about 160,000 light-years from Earth in the center of the Tarantula Nebula in the Large Magellanic Cloud, a dwarf companion galaxy of the Milky Way.

Previous observations suggested that R136a1 had a mass somewhere between 250 to 320 times the mass of the Sun. The new Zorro observations, however, indicate that this giant star may be only 170 to 230 times the mass of the Sun. Even with this lower estimate, R136a1 still qualifies as the most massive known star.

What astronomers are trying to figure out is the highest possible mass a star can possibly have. This new data suggests that this upper limit is smaller than previously believed.

First Webb infrared image of Cartwheel Galaxy

Webb's view of the Cartwheel Galaxy
Click for full image.

Scientists today have released a new infrared image of the Cartwheel Galaxy, taken by two instruments on the James Webb Space Telescope. That image is to the right, reduced to post here. From the caption:

In this near- and mid-infrared composite image, MIRI data are colored red while NIRCam data are colored blue, orange, and yellow. Amidst the red swirls of dust, there are many individual blue dots, which represent individual stars or pockets of star formation. NIRCam also defines the difference between the older star populations and dense dust in the core and the younger star populations outside of it.

The galaxy, located about a half billion light years away, is one of the more well known astronomical objects due to its unusual shape, believed caused by a collision with a smaller galaxy sometime in the past. Earlier this year for example astronomers discovered a supernovae had exploded in the galaxy sometime in 2021. To see a 1995 Hubble optical image, go here.

This Webb image reveals many new details previously obscured by dust.

Another Webb galaxy found even closer to the Big Bang

A galaxy formed only 250 million years after the universe formed

Using data from the first Webb deep field, astronomers have identified another galaxy in that image that apparently was able to form less than 250 million years after the the Big Bang, the theorized beginning of the universe.

Like the distant galaxies described last week, it also appears to have the equivalent of a billion Suns of material in the form of stars. The researchers estimate that it might have started star formation as early as 120 million years after the Big Bang, and had certainly done so by 220 million years.

You can read the actual research paper here [pdf]. The image of the galaxy to the right is taken from figure 4 of the paper. From its abstract:

We provide details of the 55 high-redshift galaxy candidates, 44 of which are new, that have enabled this new analysis. Our sample contains 6 galaxies at z≥12, one of which appears to set a new redshift record as an apparently robust galaxy candidate at z≃16.7.

The speed in which this galaxy formed places a great challenge on the Big Bang theory itself. 220 million years is an instant when it comes to galaxy formation, which has been assumed to take far longer. Either galaxy formation is a much faster process than expected, or something is seriously wrong with the timing of the Big Bang theory itself.

The earliest galaxy so far seen?

Earliest galaxy?

Scientists using the James Webb Space Telescope now think they have identified a galaxy formed only 330 million years after the Big Bang.

The red smudge in the centre of this image [to the right] is thought to be a galaxy with a redshift of around z=13, as seen by the NIRCam instrument on the James Webb Space Telescope. This redshift estimate is based on photometry so the object remains a candidate rather than a confirmed high-redshift galaxy, but if confirmed spectroscopically this would be the highest-redshift galaxy yet observed.

You can read the research paper itself here [pdf]. The galaxy is actually very young, and its nature, along with a second also described by the research, appears to contradict expectations. From the paper’s abstract:

These sources, if confirmed, join GNz11 in defying number density forecasts for luminous galaxies based on Schechter UV luminosity functions, which require a survey area > 10× larger than we have
studied here to find such luminous sources at such high redshifts. They extend evidence from lower redshifts for little or no evolution in the bright end of the UV luminosity function into the cosmic dawn epoch, with implications for just how early these galaxies began forming. This, in turn, suggests that future deep JWST observations may identify relatively bright galaxies to much earlier epochs than might have been anticipated. [emphasis mine]

In other words, this early data from Webb suggests that galaxies formed much faster than expected after the Big Bang. This either means all the theories describing the Bang are wrong, or that it might not have even happened.

NASA awards SpaceX’s Falcon Heavy launch contract for Roman Space Telescope

Capitalism in space: NASA yesterday awarded a contract to SpaceX to use its Falcon Heavy rocket to launch the Roman Space Telescope in October 2026.

. The total cost for NASA to launch the Roman telescope is approximately $255 million, which includes the launch service and other mission related costs. The telescope’s mission currently is targeted to launch in October 2026, as specified in the contract, on a Falcon Heavy rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

SpaceX’s normal launch price for the Falcon Heavy is $100 million. This higher price in probably because NASA has imposed additional requirements. It is also likely because SpaceX has no comparable competitor, and can raise its price in certain situations — such as when the government is buying — because no one can undercut it.

That launch by the way will not happen in ’26. Roman is certain to be delayed further. It was proposed in 2011 as a major astronomy project for that decade. Instead, as expected it has become a two-decade long jobs program like Webb.

NSF to do environmental impact statement on TMT

The National Science Foundation (NSF) has suddenly announced that it plans to complete a full environmental impact statement on the construction of the Thirty Meter Telescope (TMT) on Mauna Kea in Hawaii.

The National Science Foundation plans to host four meetings on the Big Island of Hawaii in August. It said it won’t decide on whether to fund the telescope until after it considers public input, the environmental review, the project’s technical readiness and other factors.

…The National Science Foundation must conduct a new study under U.S. law to invest in the project because it is part of the federal government. A report from the U.S. astronomy community last year said TMT planned to obtain 30% of the project’s estimated construction costs, or $800 million, from the U.S. government.

The timing of this announcement is most interesting, coming more than a year after NSF had decided to partly fund TMT and just shortly after the passage of a new law in Hawaii taking control of telescopes on Mauna Kea away from the University of Hawaii and giving that control to some of the activists protesting TMT. Why is this study suddenly necessary when it hadn’t seem necessary before?

I think this decision is another example of the Biden administration allowing the bureaucrats in the federal government to exercise their power. I also think it is linked with the new bigoted effort in government to always put racial concerns first — in this case tribal Hawaiians. It signals a decision by these federal bureaucrats to team up with those tribal Hawaiians that oppose TMT because it is “white” and “a symbol of colonialism” to kill it.

As I have been predicting for years, TMT will never be built.

The May micrometeoroid impact on Webb’s mirror

Figure 3 from report

In a detailed report [pdf] of Webb’s overall excellent operational status following its in-space commissioning, the science team also included an analysis of the May 2022 micrometeoriod impact on one segment of Webb’s mirror.

The image to the right, taken from figure 3 of the report, shows the remaining alignment error of Webb’s entire mirror, after alignment. Except for that one bright spot in the segment to the lower right, all of the segments show excellent alignment, well within the range predicted before launch. The bright spot however is from the impact, and suggests that one mirror segment is significantly damaged. From the report:

The micrometeoroid which hit segment C3 in the period 22—24 May 2022 UT caused significant uncorrectable change in the overall figure of that segment. However, the effect was small at the full telescope level because only a small portion of the telescope area was affected. After two subsequent realignment steps, the telescope was aligned to a minimum of 59 nm rms, which is about 5-10 nm rms above the previous best wavefront error rms values 7 . It should be noted that the drifts and stability levels of the telescope mean that science observations will typically see telescope contribution between 60 nm rms (minimum) and 80 nm rms (where WF control will typically be performed). Further, the telescope WFE combines with the science instrument WFE to yield total observatory levels in the range 70-130 nm (see Table 2), so the slight increase to telescope WFE from this strike has a relatively smaller effect on total observatory WFE.

In plain English, the impact while damaging has not seriously reduced the telescope’s predicted capabilities.

However, to be hit with this size impact so soon after launch is very worrisome, especially because Webb’s mirror is not housed in any protective tube like Hubble or most telescopes. From the report:

It is not yet clear whether the May 2022 hit to segment C3 was a rare event (i.e. an unlucky early strike by a high kinetic energy micrometeoroid that statistically might occur only once in several years), or whether the telescope may be more susceptible to damage by micrometeoroids than pre-launch modeling predicted.

The science team is presently trying to anticipate what might happen if the impact rate turns out to be much higher than expected, and what can be done to mitigate the degradation of the mirror should more impacts occur.

New Hawaiian law takes control of Mauna Kea away from astronomers

A newly passed Hawaiian law has taken the management of the top of Mauna Kea away from the University of Hawaii and given it to a new community authority which will include many of the activists who have blocked the construction of the Thirty Meter Telescope (TMT).

The new Maunakea authority will include Native Hawaiians in decisions about how the mountain is managed, with an emphasis on mutual stewardship and protecting Maunakea for generations to come. The authority will have 11 voting members, one of whom must be an active practitioner of Native Hawaiian cultural traditions, and one of whom must be a descendant of a cultural practitioner who is associated with Maunakea. There are also spots for representatives drawn from astronomy, education, land management, politics and other fields.

“I’m very hopeful for the new entity,” says Noe Noe Wong-Wilson, a Native Hawaiian elder who has helped to lead road blocks on the mountain. “It is beyond my imagination of where we would be at this time, because we have fought so long to be heard.”

The University of Hawaii has managed most of the lands around the Maunakea summit since 1968, when the state granted it a 65-year lease to operate a scientific reserve focused on astronomy. Maunakea has ideal skies for astronomical observation, given its 4,200-metre height and its stable and dark night skies. The university now has to transfer all of its management duties, including a complex set of subleases, permits and other agreements, to the new authority by 1 July 2028. [emphasis mine]

From the beginning of the protesters against TMT I made several predictions, all of which are now coming true.

  • This is a power play by some activist protesters for money and power. The new law gives them that.
  • The Democratic Party that controls Hawaii utterly supports the protesters, and was working behind the scenes to aid them. The new law proves that.
  • TMT will never be built. This new law makes that prediction almost certain.
  • The real goal of the protesters will be the eventual shut down of all astronomy on Mauna Kea. This new law is the first step in that process.

Forget about TMT. It is dead, as are any new telescopes or upgrades on Mauna Kea. Sometime around 2028, when this new authority takes over, we shall begin to see demands for the removal of telescopes.

Today’s blacklisted American: Scientists questioning Big Bang theory protest censorship of their work

Webb's first deep field image
Nothing in Webb’s first deep field image shall be questioned, by anyone!

While the blacklisting described in today’s column has little to do with left vs right politics, it demonstrates clearly that the desire to silence dissent is now culturally pervasive across many fields. In science it has become especially toxic, as this story clearly shows:

Twenty-four astronomers and physicists from ten countries have signed a petition protesting the censorship of papers that are critical of the Big Bang Hypothesis by the open pre-print website arXiv. Run by Cornell University, arXiv is supposed to provide an open public forum for researchers to exchange pre-publication papers, without peer-review. But during June, 2022, arXiv rejected for publication on the website three papers by Dr. Riccardo Scarpa, Instituto de Astrofisica de Canarias, and Eric J. Lerner, LPPFusion, Inc. which are critical of the validity of the Big Bang hypothesis.

…[quoting the petition] “Without judging the scientific validity of the papers, it is clear to us that these papers are both original and substantive and are of interest to all those concerned with the current crisis in cosmology. It plainly appears that arXiv has refused publication to these papers only because of their conclusions, which both provide specific predictions relevant to forthcoming observations and challenge LCDM cosmology [the standard dark matter/dark energy Big Bang hypothesis]. Such censorship is anathema to scientific discourse and to the possibility of scientific advance.

“We strongly urge that arXiv maintain its long-standing practice of being an “open-access archive” of non-peer reviewed “scholarly articles” and not violate that worthy practice by imposing any censorship. Instead, we encourage arXiv to abide by its own principles, and publish these three papers and others like them that clearly provide ‘sufficient original or substantive scholarly research’ results and are of obvious great interest to the arXiv audience.”

Lerner and Scarpa had attempted to get their papers published in a peer review journal and had been stymied, apparently because the topic of their paper was inappropriate for that journal. They then decided to publish on arXiv, which has for almost three decades been open to the publication of all scientific papers written by credentialed scientists, as noted at the website:
» Read more

More Webb images released

Southern Ring Nebula, as taken by Webb
Click for full image.

As planned, NASA this morning released four new science images from the James Webb Space Telescope, in addition to the deep field image released yesterday.

All are spectacular, with each producing new information not previously observed. To see the Stephen’s Quintet image go here. For the exoplanet data, showing the presence of water in its atmosphere, go here. For the Carina nebula image, go here.

The image to the right, reduced to post here, shows the Southern Ring Nebula as taken by two Webb cameras in different infrared wavelengths. From the press release:

Two stars, which are locked in a tight orbit, shape the local landscape. Webb’s infrared images feature new details in this complex system. The stars – and their layers of light – are prominent in the image from Webb’s Near-Infrared Camera (NIRCam) [at the top], while the image from Webb’s Mid-Infrared Instrument (MIRI) on the [bottom] shows for the first time that the second star is surrounded by dust. The brighter star is in an earlier stage of its stellar evolution and will probably eject its own planetary nebula in the future.

In the meantime, the brighter star influences the nebula’s appearance. As the pair continues to orbit one another, they “stir the pot” of gas and dust, causing asymmetrical patterns.

Because this is an infrared image, the colors are not natural, but were assigned based on the slightly different infrared wavelengths produced by the object’s different features. From the image’s webpage:

Several filters were used to sample narrow and broad wavelength ranges. The color results from assigning different hues (colors) to each monochromatic (grayscale) image associated with an individual filter.

Eventually astronomers will use Webb to look at many astronomical objects that Hubble has been observing for the past thirty years, adding a high resolution infrared view that will add to Hubble’s views.

First science image released from Webb

Webb's first deep field image
Click for original image.

The first science image from the James Webb Space Telescope has now been unveiled.

That image is to the right, reduced to post here. From the press release:

Known as Webb’s First Deep Field, this image of galaxy cluster SMACS 0723 is overflowing with detail. Thousands of galaxies – including the faintest objects ever observed in the infrared – have appeared in Webb’s view for the first time. This slice of the vast universe covers a patch of sky approximately the size of a grain of sand held at arm’s length by someone on the ground.

This deep field, taken by Webb’s Near-Infrared Camera (NIRCam), is a composite made from images at different wavelengths, totaling 12.5 hours – achieving depths at infrared wavelengths beyond the Hubble Space Telescope’s deepest fields, which took weeks.

The image shows the galaxy cluster SMACS 0723 as it appeared 4.6 billion years ago. The combined mass of this galaxy cluster acts as a gravitational lens, magnifying much more distant galaxies behind it. Webb’s NIRCam has brought those distant galaxies into sharp focus – they have tiny, faint structures that have never been seen before, including star clusters and diffuse features.

The smeared concentric arrangement of many reddish objects surrounding the picture’s center strongly suggests we are seeing distortion by the gravity of this galaxy cluster.

While nothing in this image appears at first glance to be different than many earlier Hubble images, it looks at objects in the infrared that are much farther away than anything ever seen before, farther than Hubble in the optical could see. To understand the new discoveries hidden in such an image will likely take several years of further research. For example, before astronomers can understand what this image shows they need to determine the red shift of each galaxy, thus roughly determining its distance and the overall 3D structure of the objects visible. Moreover, the consequences of the gravitational lensing must be unpacked.

The White House briefing itself was somewhat embarrassing to watch, as Vice President Kamala Harris, President Joe Biden, and NASA administrator Bill Nelson all struggled to explain what this image shows, and failed miserably. Moreover, the briefing had technical problems, started very late, and it appeared that Bill Nelson especially had no idea what he was looking at. The briefing also ended very abruptly when it shifted to reporters’ questions.

A galaxy with swirling arms

A galaxy with swirling arms
Click for full image.

Cool image time! The picture to the right, cropped and reduced to post here, was released yesterday by the science team that operates the Hubble Space Telescope. It captures a galaxy about 520 million light years away that appears to have been reshaped due to a galaxy merger.

That merger somehow distorted the disk of the inner galaxy, the brightest area, while also producing two sweeping spiral streams in the surrounding periphery.

Despite its unusual shape, astronomers did not choose to study this galaxy. From the caption:

This observation is a gem from the Galaxy Zoo project, a citizen science project involving hundreds of thousands of volunteers from around the world who classified galaxies to help scientists solve a problem of astronomical proportions: how to sort through the vast amounts of data generated by telescopes. A public vote selected the most astronomically intriguing objects for follow-up observations with Hubble. CGCG 396-2 is one such object, imaged here by Hubble’s Advanced Camera for Surveys.

NASA announces the targets picked for Webb’s first science images

NASA today announced the astronomical targets scientists have chosen for the first infrared science images taken by the James Webb Space Telescope which will be unveiled on July 12, 2022.

  • Carina Nebula. The Carina Nebula is one of the largest and brightest nebulae in the sky, located approximately 7,600 light-years away in the southern constellation Carina. Nebulae are stellar nurseries where stars form. The Carina Nebula is home to many massive stars, several times larger than the Sun.
  • WASP-96 b (spectrum). WASP-96 b is a giant planet outside our solar system, composed mainly of gas. The planet, located nearly 1,150 light-years from Earth, orbits its star every 3.4 days. It has about half the mass of Jupiter, and its discovery was announced in 2014.
  • Southern Ring Nebula. The Southern Ring, or “Eight-Burst” nebula, is a planetary nebula – an expanding cloud of gas, surrounding a dying star. It is nearly half a light-year in diameter and is located approximately 2,000 light years away from Earth.
  • Stephan’s Quintet: About 290 million light-years away, Stephan’s Quintet is located in the constellation Pegasus. It is notable for being the first compact galaxy group ever discovered in 1877. Four of the five galaxies within the quintet are locked in a cosmic dance of repeated close encounters.
  • SMACS 0723: Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a deep field view into both the extremely distant and intrinsically faint galaxy populations.

That only the last image is focused on distant deep space cosmology, the scientific research that Webb’s infrared instruments are optimized for suggests that NASA wishes to highlight the telescope’s other observational possibilities.

The images will be released one by one during a press conference beginning at 10:30 am (Eastern) on July 12th. It is once again important to note that though the images are likely to be spectacular, they will be false color infrared images measuring the heat produced by the objects, not optical images that we could see with our eyes.

1 12 13 14 15 16 71