Webb deploys heat radiator
Engineers today successfully deployed the heat radiator on the James Webb Space Telescope, allowing for unfolding of its 21-foot-diameter primary mirror over the next two days, the final step in the telescope’s deployment.
At about 8:48 a.m. EST, a specialized radiator assembly necessary for Webb’s science instruments to reach their required low and stable operating temperatures deployed successfully. The Aft Deployable Instrument Radiator, or ADIR, is a large, rectangular, 4 by 8-foot panel, consisting of high-purity aluminum subpanels covered in painted honeycomb cells to create an ultra-black surface. The ADIR, which swings away from the backside of the telescope like a trap door on hinges, is connected to the instruments via flexible straps made of high-purity aluminum foil. The radiator draws heat out of the instruments and dumps it overboard to the extreme cold background of deep space.
The whole operation took fifteen minutes.
If all goes well, by Saturday night (January 8th) engineers and scientists will have in their hands the world’s largest infrared telescope, and it will be operating in space. Actual scientific observations however will not begin immediately. It will still take several weeks for the telescope to cool down to the very cold temperatures it needs to see faint infrared objects, and then about five more months of additional testing to precisely align the mirrors while figuring out how the telescope itself operates in space.
We should expect the first raw and unaligned infrared images in about a month, with the first official observations released sometime in the very early summer.
Engineers today successfully deployed the heat radiator on the James Webb Space Telescope, allowing for unfolding of its 21-foot-diameter primary mirror over the next two days, the final step in the telescope’s deployment.
At about 8:48 a.m. EST, a specialized radiator assembly necessary for Webb’s science instruments to reach their required low and stable operating temperatures deployed successfully. The Aft Deployable Instrument Radiator, or ADIR, is a large, rectangular, 4 by 8-foot panel, consisting of high-purity aluminum subpanels covered in painted honeycomb cells to create an ultra-black surface. The ADIR, which swings away from the backside of the telescope like a trap door on hinges, is connected to the instruments via flexible straps made of high-purity aluminum foil. The radiator draws heat out of the instruments and dumps it overboard to the extreme cold background of deep space.
The whole operation took fifteen minutes.
If all goes well, by Saturday night (January 8th) engineers and scientists will have in their hands the world’s largest infrared telescope, and it will be operating in space. Actual scientific observations however will not begin immediately. It will still take several weeks for the telescope to cool down to the very cold temperatures it needs to see faint infrared objects, and then about five more months of additional testing to precisely align the mirrors while figuring out how the telescope itself operates in space.
We should expect the first raw and unaligned infrared images in about a month, with the first official observations released sometime in the very early summer.