New Horizons sees stellar parallax

New Horizons is now far enough away from Earth that its perspective of the universe shifts at least two nearby stars into slightly different positions than seen on Earth.

On April 22-23, the spacecraft turned its long-range telescopic camera to a pair of the closest stars, Proxima Centauri and Wolf 359, showing just how they appear in different places than we see from Earth. Scientists have long used this “parallax effect” – how a star appears to shift against its background when seen from different locations — to measure distances to stars.

An easy way to see parallax is to place one finger at arm’s length and watch it jump back and forth when you view it successively with each eye. Similarly, as Earth makes it way around the Sun, the stars shift their positions. But because even the nearest stars are hundreds of thousands of times farther away than the diameter of Earth’s orbit, the parallax shifts are tiny, and can only be measured with precise instrumentation. “No human eye can detect these shifts,” Stern said.

But when New Horizons images are paired with pictures of the same stars taken on the same dates by telescopes on Earth, the parallax shift is instantly visible. The combination yields a 3D view of the stars “floating” in front of their background star fields.

The resulting 3D image, available at the link, is very cool. Both stars clearly appear closer than the surrounding background stars, which of course is true as they are among the closest stars to the Sun.

NASA confirms Webb launch delayed again

NASA officials yesterday confirmed that, due to the new work conditions and the lock down imposed by the Wuhan flu panic, the launch of the James Webb Space telescope will not occur in March 2021.

“We will not launch in March,” said Thomas Zurbuchen, the space agency’s associate administrator for science. “Absolutely we will not launch in March. That is not in the cards right now. That’s not because they did anything wrong. It’s not anyone’s fault or mismanagement.”

Zurbuchen made these comments at a virtual meeting of the National Academies’ Space Studies Board. He said the telescope was already cutting it close on its schedule before the COVID-19 pandemic struck the agency and that the virus had led to additional lost work time. “This team has stayed on its toes and pushed this telescope forward at the maximum speed possible,” he said. “But we’ve lost time. Instead of two shifts fully staffed, we could not do that for all the reasons that we talk about. Not everybody was available. There were positive cases here and there (in the surrounding area, not on site). And so, perhaps, we had only one shift.”

No new target date has been set, though the comments even hinted that they might not be able to do it in 2021.

Webb will cost 20 times more than originally budgeted ($500 million vs $10 billion) and is now more than a decade behind schedule. In the process, those overages and delays wiped out almost all of NASA’s other astronomy projects during the 2010s.

But don’t worry! Once Webb launches the task of wiping out more astronomy projects with overages and delays will be courageously taken up by NASA’s Roman Space Telescope (formerly WFIRST), already behind schedule and over budget, and it is still only in the design phase.

Rethinking the theories that explain some supernovae

The uncertainty of science: New data now suggests that the previous consensus among astronomers that type Ia supernovae were caused by the interaction of a large red giant star with a white dwarf might be wrong, and that instead the explosion might be triggered by two white dwarfs.

If this new origin theory turns out to be correct, then it might also throw a big wrench into the theory of dark energy.

The evidence that twin white dwarfs drive most, if not all, type Ia supernovae, which account for about 20% of the supernova blasts in the Milky Way, “is more and more overwhelming,” says Dan Maoz, director of Tel Aviv University’s Wise Observatory, which tracks fast-changing phenomena such as supernovae. He says the classic scenario of a white dwarf paired with a large star such as a red giant “doesn’t happen in nature, or quite rarely.”

Which picture prevails has impacts across astronomy: Type Ia supernovae play a vital role in cosmic chemical manufacturing, forging in their fireballs most of the iron and other metals that pervade the universe. The explosions also serve as “standard candles,” assumed to shine with a predictable brightness. Their brightness as seen from Earth provides a cosmic yardstick, used among other things to discover “dark energy,” the unknown force that is accelerating the expansion of the universe. If type Ia supernovae originate as paired white dwarfs, their brightness might not be as consistent as was thought—and they might be less reliable as standard candles.

If type Ia supernovae are not reliable standard candles, then the entire Nobel Prize results that discovered dark energy in the late 1990s are junk, the evidence used to discover it simply unreliable. Dark energy might simply not exist.

What galls me about this possibility is that it was always the case. The certainty in the 1990s about using type Ia supernovae as a standard candle to determine distance was entirely unjustified. Even now astronomers do not really know what causes these explosions. To even consider them to always exhibit the same energy release was just not reasonable.

And yet astronomers in the 1990s did, and thus they fostered the theory of dark energy upon us — that the universe’s expansion was accelerating over vast distances — while winning Nobel Prizes. They still might be right, and dark energy might exist, but it was never very certain, and still is not.

Much of the fault in this does not lie with the astronomers, but with the press, which always likes to sell new theories as a certainty, scoffing over the doubts and areas of ignorance that make the theories questionable. This is just one more example of this, of which I can cite many examples, the worst of all being the reporting about global warming.

Exoplanet in Earth-like orbit circling Sun-type star

Worlds without end: Astronomers have found evidence suggesting the existence of an exoplanet about twice as massive as the Earth and orbiting a solar-twin star in an orbit almost the same as the Earth’s.

The star, Kepler-160, is about 3,000 light years away, and had previously discovered to have two exoplanets.

“Our analysis suggests that Kepler-160 is orbited not by two but by a total of four planets,” Heller summarizes the new study. One of the two planets that Heller and his colleagues found is Kepler-160d, the previously suspected planet responsible for the distorted orbit of Kepler-160c. Kepler-160d does not show any transits in the light curve of the star and so it has been confirmed indirectly. The other planet, formally a planet candidate, is KOI-456.04, probably a transiting planet with a radius of 1.9 Earth radii and an orbital period of 378 days. Given its Sun-like host star, the very Earth-like orbital period results in a very Earth-like insolation from the star – both in terms of the amount of the light received and in terms of the light color. Light from Kepler-160 is visible light very much like sunlight. All things considered, KOI-456.04 sits in a region of the stellar habitable zone – the distance range around a star admitting liquid surface water on an Earth-like planet – that is comparable to the Earth’s position around the Sun.

“KOI-456.01 is relatively large compared to many other planets that are considered potentially habitable. But it’s the combination of this less-than-double the size of the Earth planet and its solar type host star that make it so special and familiar,” Heller clarifies. As a consequence, the surface conditions on KOI-456.04 could be similar to those known on Earth, provided its atmosphere is not too massive and non-Earth-like. The amount of light received from its host star is about 93 percent of the sunlight received on Earth. If KOI-456.04 has a mostly inert atmosphere with a mild Earth-like greenhouse effect, then its surface temperature would be +5 degrees Celsius on average, which is about ten degrees lower than the Earth’s mean global temperature.

These results have many uncertainties, so we should not be surprised if further research produces significant revisions in these conclusions. Nonetheless, the number of Earth-like planets orbiting Sun-like stars in orbits like the Earth’s continues to rise.

Second exoplanet confirmed orbiting Proxima Centauri

Worlds without end: Using archived Hubble data, astronomers have now independently confirmed the existence of a second exoplanet orbiting the nearest star, Proxima Centauri.

Dubbed Proxima c, this is not the same Earth-sized exoplanet confirmed to orbit the star last week. That planet, Proxima b, orbits close to the star every 11.2 days. The new planet is much farther out.

Benedict found a planet with an orbital period of about 1,907 days buried in the 25-year-old Hubble data. This was an independent confirmation of the existence of Proxima Centauri c.

Shortly afterward, a team led by Raffaele Gratton of INAF published images of the planet at several points along its orbit that they had made with the SPHERE instrument on the Very Large Telescope in Chile.

Benedict then combined the findings of all three studies: his own Hubble astrometry, Damasso’s radial velocity studies, and Gratton’s images to greatly refine the mass of Proxima Centauri c. He found that the planet is about 7 times as massive as Earth.

Though I am unaware of any hints of additional planets orbiting Proxima Centauri, the presence of two strongly implies the likelihood of more.

Smallest satellite yet detects exoplanet

The smallest satellite yet, a cubesat, has demonstrated the potential of cubesats to do real cutting edge astronomy by successfully detected a known exoplanet.

Long before it was deployed into low-Earth orbit from the International Space Station in Nov. 2017, the tiny ASTERIA spacecraft had a big goal: to prove that a satellite roughly the size of a briefcase could perform some of the complex tasks much larger space observatories use to study exoplanets, or planets outside our solar system. A new paper soon to be published in the Astronomical Journal describes how ASTERIA (short for Arcsecond Space Telescope Enabling Research in Astrophysics) didn’t just demonstrate it could perform those tasks but went above and beyond, detecting the known exoplanet 55 Cancri e.

Scorching hot and about twice the size of Earth, 55 Cancri e orbits extremely close to its Sun-like parent star. Scientists already knew the planet’s location; looking for it was a way to test ASTERIA’s capabilities. The tiny spacecraft wasn’t initially designed to perform science; rather, as a technology demonstration, the mission’s goal was to develop new capabilities for future missions. The team’s technological leap was to build a small spacecraft that could conduct fine pointing control – essentially the ability to stay very steadily focused on an object for long periods.

…The CubeSat used fine pointing control to detect 55 Cancri e via the transit method, in which scientists look for dips in the brightness of a star caused by a passing planet. When making exoplanet detections this way, a spacecraft’s own movements or vibrations can produce jiggles in the data that could be misinterpreted as changes in the star’s brightness. The spacecraft needs to stay steady and keep the star centered in its field of view. This allows scientists to accurately measure the star’s brightness and identify the tiny changes that indicate the planet has passed in front of it, blocking some of its light.

This success is mostly a proof of concept, but it lays the groundwork for less expensive future space astronomy, using low cost cubesats capable of doing what the expensive orbiting space telescopes have done so far.

Chandra captures black hole outburst over eight months

Four-frame movie of black hole outburst

Astronomers using the Chandra X-ray space telescope have documented the motion of two blobs moving away from a stellar-mass black hole over a period of eight months, producing a four-frame movie from their images and estimating the speed of those blobs to be 80% that of the speed of light.

The gif animation to the right shows that short movie.

The black hole and its companion star make up a system called MAXI J1820+070, located in our Galaxy about 10,000 light years from Earth. The black hole in MAXI J1820+070 has a mass about eight times that of the Sun, identifying it as a so-called stellar-mass black hole, formed by the destruction of a massive star. (This is in contrast to supermassive black holes that contain millions or billions of times the Sun’s mass.)

The companion star orbiting the black hole has about half the mass of the Sun. The black hole’s strong gravity pulls material away from the companion star into an X-ray emitting disk surrounding the black hole.

While some of the hot gas in the disk will cross the “event horizon” (the point of no return) and fall into the black hole, some of it is instead blasted away from the black hole in a pair of short beams of material, or jets. These jets are pointed in opposite directions, launched from outside the event horizon along magnetic field lines. The new footage of this black hole’s behavior is based on four observations obtained with Chandra in November 2018 and February, May, and June of 2019, and reported in a paper led by Mathilde Espinasse of the Université de Paris.

Hubble has produced similar movies of the activity around the Crab Nebula. Sadly, we don’t have enough space telescopes like these in orbit to monitor such objects more frequently and thus photograph their behavior more completely. If we did we’d be able to get a much better understanding of their ongoing activity. We would also be able to produce more movies such as this, with much higher resolution and more continuous coverage.

That Jupiter Trojan comet-like asteroid was neither an asteroid nor a Trojan

Astronomers have now found that the asteroid that had suddenly become active, like a comet, and they had thought was part of the asteroids in Jupiter orbit called Trojans, was neither an asteroid nor a Trojan.

Instead, it is an actual comet captured in a strange unstable orbit around Jupiter.

[W]hen amateur astronomer Sam Deen used software on the Jet Propulsion Laboratory’s solar-system dynamics website to calculate the object’s orbit, he found P/2019 LD2 recently had a close encounter with Jupiter that left its orbit unstable. The model showed that the comet had likely been a Centaur, part of a family of outer solar system asteroids, with an orbit reaching out to Saturn. Then, on February 17, 2017, it passed about 14 million kilometers from Jupiter, an encounter that sent the comet on a wild ride and inserted it into an odd Jupiter-like orbit.

Yet although the swing past Jupiter put P/2019 LD2 into a Jupiter-like orbit, it didn’t move it near to one of the two Lagrange points where the combination of gravitational forces from Jupiter and the Sun hold Trojan asteroids. Instead of being 60° — one-sixth of the giant planet’s orbit — from Jupiter, P/2019 LD2 is only 21° ahead of Jupiter.

The orbit is unstable. It will bring the comet to within 3 million miles of Jupiter in 2063, but beyond that predictions are impossible. The exact closeness of that approach cannot be predicted with much precision, partly because of the chaotic nature of the orbit, and partly because of the random orbital changes that can occur because the comet is venting.

Poll: Hawaiians favor construction of TMT by wide margins

A new poll suggests that Hawaii’s general population supports the construction of the Thirty Meter Telescope (TMT) by a 2 to 1 margins, 61% in favor, 32% opposed.

The poll also found wide opposition to the goals and tactics of the protesters, as well as the failure of the state government under Democratic Governor David Ige to stop those protesters from illegally blocking construction.

  • 92 percent of Hawaii residents agree there should be a way for science and Hawaiian culture both to exist on Maunakea
  • 80 percent of Hawaii residents agree that peaceful protests are fine but have no tolerance for protests that result in laws being broken
  • 79 percent of Hawaii residents agree that the government is responsible for providing safe construction access to the TMT site

None of this really matters. Ige and the Democrats who run Hawaii support the bigoted beliefs of the protesters, who want all non-native residents and their projects removed from Hawaii, while imposing a rule controlled solely by these so-called native Hawaiians.

New observations confirm Earth-like planet orbiting nearest star

Worlds without end: New observations have confirmed the existence of an Earth-sized planet orbiting the nearest star to our Sun, Proxima Centauri, only 4.2 light years away..

The planet, Proxima b, is estimated to have a mass 1.17 of Earth’s, and orbit the star every 11.2 days. Based on that orbit, the planet is also in the star’s habitable zone. Whether there is life there however remains unknown.

Although Proxima b is about 20 times closer to its star than the Earth is to the Sun, it receives comparable energy, so that its surface temperature could mean that water (if there is any) is in liquid form in places and might, therefore, harbour life.

Having said that, although Proxima b is an ideal candidate for biomarker research, there is still a long way to go before we can suggest that life has been able to develop on its surface. In fact, the Proxima star is an active red dwarf that bombards its planet with X rays, receiving about 400 times more than the Earth. “Is there an atmosphere that protects the planet from these deadly rays?” asks Christophe Lovis, a researcher in UNIGE’s Astronomy Department and responsible for ESPRESSO’s scientific performance and data processing. “And if this atmosphere exists, does it contain the chemical elements that promote the development of life (oxygen, for example)? How long have these favourable conditions existed? We’re going to tackle all these questions.

The research data also suggests there might be another planet in orbit around Proxima Centauri, though this conclusion is very preliminary.

Star to get within a trillion miles of Sun in 1.4 million years

Using the precise location and motion data obtained by the space telescope Gaia, astronomers have identified a star that 1.4 million years will come within a trillion miles of the Sun.

That distance puts it well within the outer parts of the theorized Oort cloud at the edge of the solar system. Since the star, Gliese 710, has a mass half that of the Sun, it will thus disturb many objects in that Oort Cloud, causing many to eventually fall sunward and produce a hail of comets several million years later. It will be, for a long time, the brightest object in the night sky, by far.

The data also identified a number of other stars that have in past or will in the future get close to the Sun. The most important result is not that these close approaches occur, but that they have found that they are relatively rare, and even the closest, Gliese 710, never really gets that close.

The universe is big, far bigger than we can really imagine.

“Spots” orbiting Milky Ways central black hole

Using the ALMA ground-based telescope array in Chile, astronomers have detected two energetic “spots” that appear to be orbiting Sagittarius A* (pronounced A-star), the super-massive black hole at the center of the Milky Way.

The spots appear to be regions in the accretion disk surrounding the black hole that are emitting energy.

Their scenario is as follows. Hot spots are sporadically formed in the disk and circle around the black hole, emitting strong millimeter waves. According to Einstein’s special relativity theory, the emission is largely amplified when the source is moving toward the observer with a speed comparable to that of light. The rotation speed of the inner edge of the accretion disk is quite large, so this extraordinary effect arises. The astronomers believe that this is the origin of the short-term variation of the millimeter emission from Sgr A*.

The team supposes that the variation might affect the effort to make an image of the supermassive black hole with the Event Horizon Telescope. “In general, the faster the movement is, the more difficult it is to take a photo of the object,” says Oka. “Instead, the variation of the emission itself provides compelling insight for the gas motion. We may witness the very moment of gas absorption by the black hole with a long-term monitoring campaign with ALMA.” The researchers aim to draw out independent information to understand the mystifying environment around the supermassive black hole.

Everyone please repeat after me: Though this scenario makes sense, based on the facts and our knowledge, there is a lot of uncertainty about these conclusions.

NASA names WFIRST after its first head of astronomy, Nancy Roman

NASA today announced that it has renamed the proposed Wide Field Infrared Survey Telescope (WFIRST) the Nancy Grace Roman Telescope in honor of the agency’s first head of astronomy.

Considered the “mother” of NASA’s Hubble Space Telescope, which launched 30 years ago, Roman tirelessly advocated for new tools that would allow scientists to study the broader universe from space. She left behind a tremendous legacy in the scientific community when she died in 2018.

…When she arrived at NASA, astronomers could obtain data from balloons, sounding rockets and airplanes, but they could not measure all the wavelengths of light. Earth’s atmosphere blocks out much of the radiation that comes from the distant universe. What’s more, only a telescope in space has the luxury of perpetual nighttime and doesn’t have to shut down during the day. Roman knew that to see the universe through more powerful, unblinking eyes, NASA would have to send telescopes to space.

Through Roman’s leadership, NASA launched four Orbiting Astronomical Observatories between 1966 and 1972. While only two of the four were successful, they demonstrated the value of space-based astrophysics and represented the precursors to Hubble. She also championed the International Ultraviolet Explorer, which was built in the 1970s as a joint project between NASA, ESA (European Space Agency) and the United Kingdom, as well as the Cosmic Background Explorer, which measured the leftover radiation from the big bang and led to two of its leading scientists receiving the 2006 Nobel Prize in Physics.

Above all, Roman is credited with making the Hubble Space Telescope a reality. In the mid-1960s, she set up a committee of astronomers and engineers to envision a telescope that could accomplish important scientific goals. She convinced NASA and Congress that it was a priority to launch the most powerful space telescope the world had ever seen.

This is a nice and very fitting gesture to honor one of the many unsung heroes who were important in the history of space astronomy. I just hope that Roman’s telescope doesn’t end up like James Webb’s, so over budget and behind schedule that it destroys all other NASA space telescope projects. Sadly, its track record so far suggests this is what will happen, which is why the Trump administration has been trying to get it canceled.

China’s space station

The new colonial movement: China’s propaganda news services today released an article outlining in a somewhat superficial manner the overall design and program of its first full-sized space station, Tiangong-3.

The article does not really provide any new information that was not already reported back in 2016, except for this intriguing detail:

The Long March-2F carrier rocket and Shenzhou manned spacecraft will be used to transport crew and some materials between Earth and the space station. The Shenzhou can carry three astronauts and be used as a rescue spacecraft in emergency.

Earlier reports had suggested they would be using their as-yet unnamed second generation manned capsule and the Long March 5B for these functions. It now appears that they are planning to use both manned ships, probably beginning with the Shenzhou and transitioning to the new manned capsule over time.

The article also describes again their plan to launch and fly in formation with the station a two-meter optical telescope, maintaining it in orbit during the 10-year life of the station using crew from the station. This concept was one that NASA actually considered when it was first conceiving Hubble, but put aside when it was realized that the U.S. station would not launch in time.

Note also that this Chinese space telescope is only slightly smaller than Hubble, its mirror 2 meters across compared to Hubble’s 2.4 meter diameter. It will thus be the second largest optical telescope ever launched, and if it works will allow for astronomical research that will dwarf all the giant ground-based telescopes western astronomers have spent all their time and millions building in the past two decades, rather than launch several Hubble twins.

Supermassive black hole binary flares as predicted

The distant binary of two super massive black holes, dubbed QJ287, flared within four hours of its predicted time in July 2019, proving the existence of this system.

The central black hole has a mass 18 billion times that of the Sun. The smaller black hole has a mass of 150 million Suns. Its orbit is twelve years long, and when it makes its close approach the interaction between these two monsters causes high energy flares.

We know all this because astronomers have been watching OJ 287 since the 1890s, before they knew what it was. In the intervening century, the system has shot off two outbursts roughly every 12 years, almost like clockwork.

Yet this pattern took time to decipher, as the bigger black hole in OJ 287 is also a blazar. Its black hole, or the disk that feeds it, powers twin plasma jets shooting out along opposite directions, and one of these jets is pointed almost right at Earth. The volatility of this plasma-and-photon stream makes OJ 287 a highly variable visible-light source. It wasn’t until a century after its discovery that astronomers realized that there was a periodic signal hidden within the noise — and that dual dancing black holes could cause it.

Observations in 2005 confirmed those ideas, and astronomers made increasingly precise predictions for subsequent flares in 2007 and 2015. Now, Seppo Laine (Spitzer Science Center, Caltech), Lankeswar Dey (Tata Institute of Fundamental Research, India), and colleagues are publishing observations of the latest flare in the Astrophysical Journal. The authors predicted, and then watched for, a flare expected to arrive in the early hours of July 31, 2019.

QJ287 is 3.5 billion light years away, which makes this prediction and the observations even more remarkable.

The closest black hole: 1,000 light years away?

The uncertainty of science: Astronomers now think they have detected evidence of a stellar-mass black hole only a thousand light years away and orbiting a star system that is visible to the naked eye.

Thomas Rivinius, an astronomer with the European Southern Observatory (ESO), and his colleagues studied the unusual star system HR 6819 in this way using a 2.2-meter telescope in Chile, operated by ESO and the Max Planck Society. They thought it was a binary system, but there was an extra wobble in the periodic light shifts of one of the stars that indicated something else was asserting its presence. It turned out to be a triple system, with one star in a fast 40-day orbit with an unseen companion and another star on a more distant, slow-moving trajectory, they write today in Astronomy & Astrophysics. The invisible companion’s mass was large enough—four times the mass of the Sun—that, if it was a star, “we would have seen it,” Rivinius says.

Though there are a lot of uncertainties, this discovery is reasonable, and expected. In the coming years astronomers will surely find more such stellar-mass black holes, with some even closer to Earth.

A failed star with cloud bands like Jupiter’s

The uncertainty of science: Astronomers think they have detected cloud bands similar to Jupiter’s on a brown dwarf about 6.5 light years away.

A team of astronomers has discovered that the closest known brown dwarf, Luhman 16A, shows signs of cloud bands similar to those seen on Jupiter and Saturn. This is the first time scientists have used the technique of polarimetry to determine the properties of atmospheric clouds outside of the solar system, or exoclouds.

Brown dwarfs are objects heavier than planets but lighter than stars, and typically have 13 to 80 times the mass of Jupiter. Luhman 16A is part of a binary system containing a second brown dwarf, Luhman 16B. At a distance of 6.5 light-years, it’s the third closest system to our Sun after Alpha Centauri and Barnard’s Star. Both brown dwarfs weigh about 30 times as much as Jupiter.

Despite the fact that Luhman 16A and 16B have similar masses and temperatures (about 1,900° F or 1,000° C), and presumably formed at the same time, they show markedly different weather. Luhman 16B shows no sign of stationary cloud bands, instead exhibiting evidence of more irregular, patchy clouds. Luhman 16B therefore has noticeable brightness variations as a result of its cloudy features, unlike Luhman 16A.

This conclusion is based on studying the polarized light coming from both brown dwarfs. For Luhman 16A, the result suggested bands. For Luhman 16B, the result suggested patchy, irregular clouds like on Earth.

The emphasis should be on the words “suggested” and “uncertainty.” This is good science, but the data is very sparse. We will need to actually see at these objects to really determine their weather.

First Fast Radio Burst discovered inside the Milky Way

The uncertainty of science: Astronomers now think they have discovered the first Fast Radio Burst (FRB) to have occurred inside the Milky Way, only 30,000 light years away, and from this now hypothesize that the bursts come from a particular kind of neutron star called a magnetar because of its super-powerful magnetic field.

The key is that, using multiple different telescopes, they also detected X-ray emissions from the same object.

The X-ray counterpart to the SGR 1935+2154 burst was not particularly strong or unusual, said astrophysicist Sandro Mereghetti of the National Institute for Astrophysics in Italy, and research scientist with the ESA’s INTEGRAL satellite. But it could imply that there’s a lot more to FRBs than we can currently detect.

“This is a very intriguing result and supports the association between FRBs and magnetars,” Mereghetti told ScienceAlert. “The FRB identified up to now are extragalactic. They have never been detected at X/gamma rays. An X-ray burst with luminosity like that of SGR1935 would be undetectable for an extragalactic source.”

Of course, more data is needed, as well as more detections, but it appears that astronomers are beginning to hone in on the solution to the source of FBRs.

Starlink satellites, not aliens, are those strings of lights in the night sky

Apparently many people have been seeing the reflected strings of SpaceX’s new Starlink satellites in the night sky, and are calling news organizations asking about them.

Some viewers have noticed the “lights” in the sky will go dark, one by one. This is due to the reflection of light from the moon and Earth and how the position of the satellites change.

Elon Musk, the founder and CEO of SpaceX, detailed a plan this week to “mitigate the impact of their Starlink satellite constellation on night sky observation,” according to an article on Tech Crunch.

In that Tech Crunch article, Musk describes how they are installing sun visors on the satellites to prevent the reflections and make them hopefully invisible to the Earthbound observers.

This will make the astronomy crowd happy, which wants its new big ground-based telescopes to be useful. I think they should instead be focusing their effort in building more space-based telescopes.

The Sun fluctuates far less than other similar stars

A new survey of 369 sun-like stars has confirmed what earlier studies have shown, that the Sun is remarkable inactive compared with similar stars.

A comprehensive catalogue containing the rotation periods of thousands of stars has been available only for the last few years. It is based on measurement data from NASA’s Kepler Space Telescope, which recorded the brightness fluctuations of approximately 150000 main sequence stars (i.e. those that are in the middle of their lifetimes) from 2009 to 2013. The researchers scoured this huge sample and selected those stars that rotate once around their own axis within 20 to 30 days. The Sun needs about 24.5 days for this. The researchers were able to further narrow down this sample by using data from the European Gaia Space Telescope. In the end, 369 stars remained, which also resemble the Sun in other fundamental properties.

The exact analysis of the brightness variations of these stars from 2009 to 2013 reveals a clear picture. While between active and inactive phases solar irradiance fluctuated on average by just 0.07 percent, the other stars showed much larger variation. Their fluctuations were typically about five times as strong. “We were very surprised that most of the Sun-like stars are so much more active than the Sun,” says Dr. Alexander Shapiro of MPS.

It is possible that this inactivity might be because the Sun just happens to be going through a quiet phase, but that is becoming increasingly less likely as the surveys find more and more sun-like stars, and none as inactive as the Sun.

If the Sun is this unusual, we must ask if this inactivity is a fundamental requirement for life to form. Active stars provide a more inhospitable environment. If inactive stars like the Sun are very rare, however, that suggests that life itself in the universe could be very rare as well.

Hubble photographs break-up of Comet ATLAS

The break-up of Comet ATLAS
For the full images go to April 20 and April 23.

Cool image time! Scientists using the Hubble Space Telescope have captured the break-up of Comet ATLAS over a period of several days. The two images to the right, cropped and annotated to post here, were taken on April 20th and April 23rd respectively.

Hubble identified about 30 fragments on April 20, and 25 pieces on April 23. They are all enveloped in a sunlight-swept tail of cometary dust. “Their appearance changes substantially between the two days, so much so that it’s quite difficult to connect the dots,” said David Jewitt, professor of planetary science and astronomy at UCLA, Los Angeles, California, leader of one of two teams who photographed the doomed comet with Hubble. “I don’t know whether this is because the individual pieces are flashing on and off as they reflect sunlight, acting like twinkling lights on a Christmas tree, or because different fragments appear on different days.”

That there are fewer pieces in the later image could also be because the smaller fragments had crumbled even more during the three days between photos, and thus were simply too small to see any longer.

More data from interstellar Comet 2I/Borisov as it zipped past Sun in December

Astronomers studying interstellar Comet 2I/Borisov as it zipped past Sun in December have found that while in many ways it resembled solar system comets, the differences were revealing.

During its trip through the solar system, the comet lost nearly 61 million gallons (230 million liters) of water — enough to fill over 92 Olympic-size swimming pools. As it moved away from the Sun, Borisov’s water loss dropped off — and did so more rapidly than any previously observed comet. Xing said this could have been caused by a variety of factors, including surface erosion, rotational change and even fragmentation. In fact, data from Hubble and other observatories show that chunks of the comet broke off in late March.

…Swift’s water production measurements also helped the team calculate that Borisov’s minimum size is just under half a mile (0.74 kilometer) across. The team estimates at least 55% of Borisov’s surface — an area roughly equivalent to half of Central Park — was actively shedding material when it was closest to the Sun. That’s at least 10 times the active area on most observed solar system comets. Borisov also differs from solar system comets in other aspects. For example, astronomers working with Hubble and the Atacama Large Millimeter/submillimeter Array, a radio telescope in Chile, discovered Borisov produced the highest levels of carbon monoxide ever seen from a comet at that distance from the Sun.

Because more of the comet’s entire surface had water ice than seen in solar system comets, it suggests that the comet has never been close to another star before. That the water release dropped off precipitously however also suggests that that surface layer of ice was not very deep.

First exoplanet imaged was nothing more than a debris cloud

The uncertainty of science: What had originally been thought to be the first image ever taken of an exoplanet has now turned out to be only the fading and expanding cloud of debris, left over from a collusion.

The object, called Fomalhaut b, was first announced in 2008, based on data taken in 2004 and 2006. It was clearly visible in several years of Hubble observations that revealed it was a moving dot. Until then, evidence for exoplanets had mostly been inferred through indirect detection methods, such as subtle back-and-forth stellar wobbles, and shadows from planets passing in front of their stars.

Unlike other directly imaged exoplanets, however, nagging puzzles arose with Fomalhaut b early on. The object was unusually bright in visible light, but did not have any detectable infrared heat signature. Astronomers conjectured that the added brightness came from a huge shell or ring of dust encircling the planet that may possibly have been collision-related. The orbit of Fomalhaut b also appeared unusual, possibly very eccentric. “Our study, which analyzed all available archival Hubble data on Fomalhaut revealed several characteristics that together paint a picture that the planet-sized object may never have existed in the first place,” said Gáspár.

The team emphasizes that the final nail in the coffin came when their data analysis of Hubble images taken in 2014 showed the object had vanished, to their disbelief. Adding to the mystery, earlier images showed the object to continuously fade over time, they say. “Clearly, Fomalhaut b was doing things a bona fide planet should not be doing,” said Gáspár.

The interpretation is that Fomalhaut b is slowly expanding from the smashup that blasted a dissipating dust cloud into space. Taking into account all available data, Gáspár and Rieke think the collision occurred not too long prior to the first observations taken in 2004. By now the debris cloud, consisting of dust particles around 1 micron (1/50th the diameter of a human hair), is below Hubble’s detection limit. The dust cloud is estimated to have expanded by now to a size larger than the orbit of Earth around our Sun.

This is not the first exoplanet that astronauts thought they had imaged, only to find out later that it was no such thing.

Remember this when next you hear or read some scientist telling you they are certain about their results, or that the science is “settled.” Unless you can get close enough to get a real picture in high resolution, or have tons of data from many different sources over a considerable period of time, and conclusions must always be subject to skepticism

Interstellar Comet 2I/Borisov has an excess of carbon monoxide

Astronomers using two difference space telescopes have found that Comet 2I/Borisov, the first known interstellar comet, has an abundance of carbon monoxide when compared to solar system comets.

The team used Hubble’s unique ultraviolet sensitivity to spectroscopically detect carbon monoxide gas escaping from comet Borisov’s solid comet nucleus. Hubble’s Cosmic Origins Spectrograph observed the comet on four separate occasions, from Dec. 11, 2019 to Jan. 13, 2020, which allowed the researchers to see the object’s chemical composition change quickly, as different ice mixtures, including carbon monoxide, oxygen, and water, sublimated under the warmth of the Sun.

The Hubble astronomers were surprised to find that the interstellar comet’s coma, the gas cloud surrounding the nucleus, contains a high amount of carbon monoxide gas, at least 50% more abundant than water vapor. This amount is more than three times higher than the previously measured quantity for any comet entering the inner solar system. The water measurement was made by NASA’s Neil Gehrels-Swift satellite, whose observations were conducted in tandem with the Hubble study.

Carbon monoxide ice is very volatile. It doesn’t take much sunlight to heat the ice and convert it to gas that escapes from a comet’s nucleus. For carbon monoxide, this activity occurs very far from the Sun, about 11 billion miles away, more than twice the distance of Pluto at its farthest point from the Sun. In contrast, water remains in its icy form until about 200 million miles from the Sun, the approximate distance of the inner edge of the asteroid belt.

However, for comet Borisov, the Hubble measurements suggest that some carbon monoxide ice was locked inside the comet’s nucleus, revealed only when the Sun’s heat stripped away layers of water ice. “The amount of carbon monoxide did not drop as expected as the comet receded from the Sun. This means that we are seeing the primitive layers of the comet, which really reflect what this object is made of,” Bodewits explained. “Because of the abundance of carbon monoxide ice that survived so close to the Sun, we think that comet Borisov comes from a much colder place and from a very different debris disk around a star than our own.”

With solar system comets, the ratios between water and carbon monoxide are the reverse, with much more water detected. They theorize, based on these results, that the comet might have come from a cool red dwarf star, but with the available data that is nothing more than a guess at this point.

Astronomers claim to have discovered most powerful supernova ever

The uncertainty of science: Astronomers have now calculated that a supernova that was spotted in 2016 was possibly the brightest ever detected, and might have been caused by the merger of two massive stars, each about sixty times as massive as the Sun.

SN 2016aps was discovered by the Panoramic Survey Telescope and Rapid Response System (Pan- STARRS) Survey for Transients on February 22, 2016 with an apparent magnitude of 18. Also known as PS16aqy, the explosion occurred in a low-mass galaxy some 3.1 billion light-years from Earth.

University of Birmingham’s Dr. Matt Nicholl and colleagues believe SN 2016aps could be an example of an extremely rare ‘pulsational pair-instability’ supernova, possibly formed from two massive stars that merged before the explosion. Such an event so far only exists in theory and has never been confirmed through astronomical observations.

…The researchers observed SN 2016aps for two years, until it faded to 1% of its peak brightness. Using these measurements, they calculated the mass of the supernova was between 50 to 100 solar masses. Typically supernovae have masses of between 8 and 15 solar masses.

They theorize that the supernova became especially bright when the explosion collided with a gas shell that already surrounded both stars.

Lots of assumptions and guesswork here, based on a tiny amount of data. The biggest lack is that they don’t have any observations of the star (or stars) prior to the supernova, so any theory about what those stars were like is exactly that, a theory.

Earth-sized exoplanet in habitable zone found in old Kepler data

A review of the data produced by the space telescope Kepler, now retired, has discovered an exoplanet about the same size as Earth and also located in the habitable zone that had been missed previously by software.

Scientists discovered this planet, called Kepler-1649c, when looking through old observations from Kepler, which the agency retired in 2018. While previous searches with a computer algorithm misidentified it, researchers reviewing Kepler data took a second look at the signature and recognized it as a planet. Out of all the exoplanets found by Kepler, this distant world – located 300 light-years from Earth – is most similar to Earth in size and estimated temperature.

This newly revealed world is only 1.06 times larger than our own planet. Also, the amount of starlight it receives from its host star is 75% of the amount of light Earth receives from our Sun – meaning the exoplanet’s temperature may be similar to our planet’s as well. But unlike Earth, it orbits a red dwarf. Though none have been observed in this system, this type of star is known for stellar flare-ups that may make a planet’s environment challenging for any potential life.

A number of Earth-like planets have been found around red dwarf stars. Whether life could evolve in such places is entirely unknown. Red dwarfs are small, and would have likely formed in a nebula cloud with a dearth of many elements and materials needed for life. Moreover, because they are also so dim, the habitable zone is very near the star, meaning that, as the article mentions, strong flares are more dangerous.

At the same time, red dwarfs are the most common star, and the most long-lived, capable of burning for tens of billions of years. With enough time and numbers anything is still possible.

Confirmed: Comet ATLAS has broken apart

Astronomers have now confirmed the fact that Comet ATLAS has broken into several pieces, and will not put on a spectacular sky show this coming May.

Just a month ago, it looked like the icy wanderer, officially known as C/2019 Y4 Atlas, might put on a dazzling sky show around the time of its closest approach to the sun, or perihelion, which occurs on May 31.

But relatively lackluster behavior soon dimmed such hopes. And optimism surrounding the comet is now pretty much extinguished, for it’s no longer in one piece. Comet Atlas “has shattered both its and our hearts,” astrophysicist Gianluca Masi, the founder and director of the Virtual Telescope Project in Italy, said in an emailed statement on Sunday (April 12). “Its nucleus disintegrated, and last night I could see three, possibly four main fragments.”

A nice picture of the break-up can be seen here.

We are due for another great comet, like Comet Hale-Bopp in the late 1990s. Unfortunately, Comet ATLAS won’t be that comet.

Universe’s expansion rate found to differ in different directions

The uncertainty of science: Using data from two space telescopes, astronomers have found that the universe’s expansion rate appears to differ depending on the direction you look.

This latest test uses a powerful, novel and independent technique. It capitalizes on the relationship between the temperature of the hot gas pervading a galaxy cluster and the amount of X-rays it produces, known as the cluster’s X-ray luminosity. The higher the temperature of the gas in a cluster, the higher the X-ray luminosity is. Once the temperature of the cluster gas is measured, the X-ray luminosity can be estimated. This method is independent of cosmological quantities, including the expansion speed of the universe.

Once they estimated the X-ray luminosities of their clusters using this technique, scientists then calculated luminosities using a different method that does depend on cosmological quantities, including the universe’s expansion speed. The results gave the researchers apparent expansion speeds across the whole sky — revealing that the universe appears to be moving away from us faster in some directions than others.

The team also compared this work with studies from other groups that have found indications of a lack of isotropy using different techniques. They found good agreement on the direction of the lowest expansion rate.

More information here.

The other research mentioned in the last paragraph in the quote above describes results posted here in December. For some reason that research did not get the publicity of today’s research, possibly because it had not yet been confirmed by others. It now has.

What this research tells us, most of all, is that dark energy, the mysterious force that is theorized to cause the universe’s expansion rate to accelerate — not slow down as you would expect– might not exist.

Update: I’ve decided to embed, below the fold, the very clear explanatory video made by one of the scientists doing that other research. Very helpful in explaining this very knotty science.

Comet ATLAS appears to be breaking apart

Comet ATLAS, which astronomer hope could be the brightest comet in decades, is unfortunately showing evidence of breaking up, which if so could short circuit any spectacular comet show.

In a recent Astronomical Telegram, astronomers Quanzhi Ye (University of Maryland) and Qicheng Zhang (Caltech) report that photographs taken on April 2nd and April 5th of the comet revealed a marked change in the appearance of its core or pseudo-nucleus from starlike and compact to elongated and fuzzy. A second team of astronomers led by I. A. Steele (Liverpool John Moores University) confirmed the discovery. This change in appearance is “consistent with a sudden decline or cessation of dust production, as would be expected from a major disruption of the nucleus,” wrote Zhang and Ye.

An elongated nucleus is often a bad sign and could mean the comet’s headed for disintegration much like what happened to Comet Elenin (C/2010 X1) prior to its September 2011 perihelion passage when its core crumbled and the object rapidly dissipated. Addition evidence of ATLAS’s breakup comes from an unexpected shift in the direction of its orbital motion caused by “non-gravitational” forces. Fragmentation exposes fresh ice to sunlight which quickly vaporizes. The expanding gases act like a natural rocket engine and gently push the comet from its appointed path.

The article outlines in detail how bright ATLAS could become, because of its size and orbit and proximity to Earth as it passes closest to the Sun in late May. Assuming it does not disintegrate, it could end up brighter than Venus. Or not. Predicting the eventual brightness of a newly discovered comet is more guesswork than science. That the comet might be falling apart suggests its eventually brightness will be less that hoped.

Big sections break off of interstellar Comet 2I/Borisov

The uncertainty of science: New observations of the interstellar Comet 2I/Borisov as it exits our solar system indicate that large fragments have recently broken from it, and that the comet might possibly be on the verge of breaking up.

Astronomers have seen evidence of two fragments, but the data suggests these are relatively small compared to the entire comet. On the other hand,

Before perihelion, Jewitt’s analysis of Hubble images showed that Comet Borisov is much smaller than had been thought. The comet’s nucleus is not directly visible, but in the January 10th Astrophysical Journal Letters, Jewitt put its diameter between 0.4 and 1 kilometer. That’s small enough that solar vaporization of surface ices on the side facing the Sun could spin up its rotation beyond gravity’s ability to hold it together.

However, the comet’s size is tricky to estimate, as its surface appears to be emitting so much gas and dust that it obscures the nucleus. The fragment that Jewitt observed is about as bright as the comet itself, but because its surface is so icy and active, he thinks the fragment’s mass is less than 1% of the whole comet. That would make the split more like a side mirror dropping off a car than a car falling apart. Why the fragment split from the comet is unclear, but possibilities include thermal vaporization after new material was exposed, as well as the force from the comet’s spin if it’s spinning as fast as Jewitt suggests.

Whether the comet is about to break up remains unknown. Wouldn’t it be nice if someone was racing to put a mission together to visit it?

1 22 23 24 25 26 72