The unfinished search for the Hubble constant

The uncertainty of science: Scientists continue to struggle in their still unfinished search for determining the precise expansion rate for the universe, dubbed the Hubble constant in honor of Edwin Hubble, who discovered that expansion.

The problem is, the values obtained from [two different] methods do not agree—a discrepancy cosmologists call “tension.” Calculations from redshift place the figure at about 73 (in units of kilometers per second per megaparsec); the CMB estimates are closer to 68. Most researchers first thought this divergence could be due to errors in measurements (known among astrophysicists as “systematics”). But despite years of investigation, scientists can find no source of error large enough to explain the gap.

I am especially amused by these numbers. Back in 1995 NASA had a big touted press conference to announce that new data from the Hubble Space Telescope had finally determined the exact number for the Hubble constant, 80 (using the standard above). The press went hog wild over this now “certain” conclusion, even though other astronomers disputed it, and offered lower numbers ranging from 30 to 65. Astronomer Allan Sandage of the Carnegie Observatories was especially critical of NASA’s certainty, and was dully ignored by most of the press.

In writing my own article about this result, I was especially struck during my phone interview with Wendy Friedman, the lead scientist for Hubble’s results, by her own certainty. When I noted that her data was very slim, the measurements of only a few stars from one galaxy, she poo-pooed this point. Her result had settled the question!

I didn’t buy her certainty then, and in my article, for The Sciences and entitled most appropriately “The Hubble Inconstant”, made it a point to note Sandage’s doubts. In the end it turns out that Sandage’s proposed number then of between 53 and 65 was a better prediction.

Still, the science for the final number remains unsettled, with two methods coming up with numbers that are a little less than a ten percent different, and no clear explanation for that difference. Isn’t science wonderful?

Moon hit by small meteorite during eclipse

During the lunar eclipse two days ago on January 20, 2018 amateur astronomers were able to record the impact of a small meteorite.

The MIDAS survey is a Moon-watching that scours video of its surface in the hopes of detecting the tiny flashes associated with meteorite impacts. In this case, MIDAS scored a home run, and it was the first time the system was able to spot an impact during a total lunar eclipse.

“In total I spent almost two days without sleeping, including the monitoring time during the eclipse,” [Jose] Madiedo explained to Gizmodo. “I was exhausted when the eclipse ended—but when the automatic detection software notified me of a bright flash, I jumped out of my chair. It was a very exciting moment because I knew such a thing had never been recorded before.”

The meteorite itself wasn’t terribly large, and is estimated to have only been around 22 pounds.

I have embedded the video of the impact below the fold. It is very short, and the flash is not very impressive, but it still is quite cool.
» Read more

Is the pole of the Milky Way’s central black hole pointing directly at us?

The uncertainty of science: New data obtained using a constellation of Earth-based telescopes, working as a unit, strongly suggests that the pole of the Milky Way7s supermassive central black hole, dubbed Sagittarius A* (pronounced A-star), is pointing directly at us.

The high quality of the unscattered image has allowed the team to constrain theoretical models for the gas around Sgr A*. The bulk of the radio emission is coming from a mere 300 milllionth of a degree, and the source has a symmetrical morphology. “This may indicate that the radio emission is produced in a disk of infalling gas rather than by a radio jet,” explains Sara Issaoun, graduate student at the Radboud University Nijmegen in the Netherlands, who leads the work and has tested several computer models against the data. “However, that would make Sgr A* an exception compared to other radio emitting black holes. The alternative could be that the radio jet is pointing almost at us”.

The German astronomer Heino Falcke, Professor of Radio Astronomy at Radboud University and PhD supervisor of Issaoun, calls this statement very unusual, but he also no longer rules it out. Last year, Falcke would have considered this a contrived model, but recently the GRAVITY team came to a similar conclusion using ESO’s Very Large Telescope Interferometer of optical telescopes and an independent technique. “Maybe this is true after all”, concludes Falcke, “and we are looking at this beast from a very special vantage point.”

If this is true, it might explain why Sgr A* is generally observed to be one of the quietest central supermassive black holes known. Compared to many others, its flux of emissions is far less.

Democratic House threatens Webb cancellation

The House, now controlled by the Democratic Party, has threatened cancellation of the James Webb Space Telescope should that project, already overbudget by $8 billion and 9 years behind schedule, fail to meet its present budget limits.

[The House budget] bill includes the full $304.6 million requested for JWST in 2019, but the report accompanying the bill offered harsh language, and a warning, regarding the space telescope given the cost overruns and schedule delays announced last year.

“There is profound disappointment with both NASA and its contractors regarding mismanagement, complete lack of careful oversight, and overall poor basic workmanship on JWST,” the report states. “NASA and its commercial partners seem to believe that congressional funding for this project and other development efforts is an entitlement, unaffected by failures to stay on schedule or within budget.”

The bill does increase the cost cap for JWST by about $800 million, to a little more than $8.8 billion, to address the latest overruns. “NASA should strictly adhere to this cap or, under this agreement, JWST will have to find cost savings or cancel the mission,” the report states.

I really don’t take this Congressional threat seriously. Our Congress is universally known in Washington as an easy mark for big money. The technique is called a buy-in, where you initially lowball the budget of your project, get it started, and then when it goes overbudget, Congress routinely shovels out the money to continue. Webb is a classic and maybe the worst example of this, but this game has been going on since the 1960s, with no sense that the Congresses of the last half century have had any problem with it.

And I especially don’t take it seriously from the Democrats who, even more than the Republicans, like to shovel money out.

The bankrupt unwillingness of both parties to care for the interest of the country for the past few decades in this matter explains why we have federal debt exceeding $20 trillion.

Astronomers begin their 2020 decadal survey

The astronomy community has begun work on their 2020 decadal survey, the report they issue at the start of every decade since the early 1960s outlining their space priorities for the upcoming ten years.

While the first four decadal surveys were very successful, leading to the surge in space telescopes in the 1990s, the last two surveys in 2000 and 2010 have been failures, with the former proposing the James Webb Space Telescope and the latter the Wide Field Infared Survey Telescope (WFIRST), both of which have not launched, are behind schedule, and significantly over-budget.

The new survey appears focused on addressing this.

The 2020 decadal survey will develop detailed cost estimates for each project, as well as guidance for what managers can do if money gets tight. “We have to look at the budget reality while also doing things that are visionary,” says Fiona Harrison, an astronomer at the California Institute of Technology in Pasadena and co-chair of the effort.

Unfortunately, it is also going to focus on leftist identity politics.

Responding to problems of racism and harassment in science, the survey will also assess the state of astronomy as a profession and make recommendations for how it can improve. “We’re going to go there,” says the other co-chair, Robert Kennicutt, an astronomer at the University of Arizona in Tucson and Texas A&M University in College Station.

I do not have high hopes for this decadal survey, or for space science in the 2020s. The space astronomy community chose badly in the past twenty years, and it is likely going to take another decade for it to recover. For example, WFIRST appears to be going forward, and it also appears that it will be the same financial black hole that Webb was, eating up the entire space astrophysics budget at NASA for years.

Fix pinpointed for Hubble main camera

Engineers have identified the issue that put the main camera of the Hubble Space Telescope into safe mode last week, and expect to have the camera back in operation in two or three days.

Hubble’s Wide Field Camera 3 (WFC3) took itself offline last week as a safety precaution, after onboard software noticed anomalous voltage readings within the instrument. But Hubble team members have now determined that voltage levels actually remained within the normal range, ascribing the glitch to a telemetry issue rather than a power-supply problem.

The mission team reset the relevant telemetry circuits, gathered some more engineering data and then brought the WFC3 back to an operational state. “All values were normal. Additional calibration and tests will be run over the next 48 to 72 hours to ensure that the instrument is operating properly,” NASA officials wrote in a Hubble update Tuesday (Jan. 15).

None of this changes the reality that it is almost a decade since the last shuttle repair mission, and Hubble is facing a long slow decline leading to its eventual loss, with no replacement planned by anyone.

Hubble’s main camera in safe mode

The coming dark age: The Wide Field Camera on the Hubble Space Telescope has experienced “an anomaly” that has forced its shut down.

The announcement is a mere one paragraph long, and provides no further information.

This camera was installed on the space telescope during the last shuttle mission in 2009. It is now almost a decade since that mission, which was expected to extend Hubble’s life for at least five years. It is therefore not surprising that things are beginning to fail. In October they had a serious gyroscope problem when a gyroscope failed and they had problems getting their last back-up gyroscope to work. They got it working, but this has left us with a telescope with no gyroscope backups. With the next failure they will have to shift to one gyroscope mode, meaning sharp images will no longer be possible. Now the main camera has shut down.

Unfortunately, it appears that we are reaching the end of Hubble’s life span. The sad thing is that this shouldn’t be necessary. It can be repaired, but this would require a robot mission, something that would have been very difficult a decade ago but is quite doable at a reasonable cost today. No such mission is being considered however.

Even worse, the bad planning that is routine for our modern intellectual class has left us with no replacement, for the foreseeable future. In the late 1990s the astronomy community chose this path, deciding to replace Hubble with an infrared space telescope, the James Webb Space Telescope. They and NASA also decided to push the limits of engineering with Webb, resulting in a project that is about a decade behind schedule with a budget that has ballooned from $1 billion to $9 billion. Meanwhile, there has been no money for any other major space telescopes. And the one the astronomy community proposed in 2011, WFIRST, is already over budget and behind schedule, in its design phase.

The astronomy community has also decided in the past two decades that it could replace Hubble with giant ground-based telescopes, a decision that has so far proven to be problematic. Though adaptive optics can eliminate some of the fuzziness caused by the atmosphere, it limits observations to very narrow fields of view, meaning it cannot obtain large mosaics of big objects, such as this Hubble release earlier this week of an image of the nearby Triangulum Galaxy. Moreover, almost all of the giant ground-based telescopes built so far have struggled with many engineering issues.

In terms of astronomy, we are thus about to go blind, returning to the days prior to the space age when our view of the heavens was fuzzy and out of focus.

TESS spots first exoplanets plus supernovae and more

The Transiting Exoplanet Surveying Satellite (TESS) has successful spotted its first exoplanets.

NASA’s Transiting Exoplanet Survey Satellite (TESS) has found three confirmed exoplanets, or worlds beyond our solar system, in its first three months of observations.

The mission’s sensitive cameras also captured 100 short-lived changes — most of them likely stellar outbursts — in the same region of the sky. They include six supernova explosions whose brightening light was recorded by TESS even before the outbursts were discovered by ground-based telescopes.

These discoveries confirm that the spacecraft is operating exactly as designed. Now comes the herculean task of analyzing the gigantic amount of data it is pouring down to see what is hidden there.

First faint image of Ultima Thule

Ultima Thule, first image

In anticipation of receiving data from the fly-by just past midnight last night, the New Horizons team has released the image above, taken 24 hours earlier.

Just over 24 hours before its closest approach to Kuiper Belt object Ultima Thule, the New Horizons spacecraft has sent back the first images that begin to reveal Ultima’s shape. The original images have a pixel size of 6 miles (10 kilometers), not much smaller than Ultima’s estimated size of 20 miles (30 kilometers), so Ultima is only about 3 pixels across (left panel). However, image-sharpening techniques combining multiple images show that it is elongated, perhaps twice as long as it is wide (right panel). This shape roughly matches the outline of Ultima’s shadow that was seen in observations of the object passing in front of a star made from Argentina in 2017 and Senegal in 2018.

This object is definitely strangely shaped.

New Horizons is traveling fast, which is why we won’t get good images until practically the instant the fly-by happens. And the first downloads from that fly-by are due to arrive within the next two hours. Keep your fingers crossed that the spacecraft operated as programmed and captured Ultima Thule in all its weird glory.

One point about the sad state of journalism these days. Numerous media publications posted stories last night celebrating that fly-by, as if they knew it was a success. This is bunk. We won’t know what happened until this morning. To imply we do is the hallmark of fake news.

Why the Drake equation is overrated

The uncertainty of science: An astrophysicist explains why the Drake equation is useless for predicting the number of alien species in the universe.

While the Drake equation may have spurred the early scientific discussion of the search for extraterrestrial intelligence, it doesn’t have much value beyond that. We can’t use to it further our understanding, and we can’t use it to properly guide our thinking. The huge uncertainties in the parameters, the unknown ways those uncertainties mix, and the absolute lack of any guidance in even choosing those parameters robs it of any predictive power. Prediction is at the heart of science. Prediction is what makes an idea useful. And if an idea isn’t useful, why keep it around?

I just wish this same logic was applied to all climate models. They are as useless. Their own huge uncertainties have made them utterly unable to predict anything, for decades. Yet, despite this ongoing failure, vast amounts of research money continues to be poured into the cottage industry that produces them. Worse, too many people in both the intellectual and journalist communities take them far too seriously.

It is a tragedy that is hurting science badly.

Nancy Roman passes away at 93

R.I.P. Nancy Roman, NASA’s first chief astronomer, died on Christmas at the age of 93.

Her name is largely forgotten, but her support for building the Hubble Space Telescope in the 1960s and the 1970s was critical in getting it done. As important, her support for all in-space astronomy in these early years eventually made it possible. During her term NASA built and launched the first space telescopes. Some were duds. Some were incredible successes. Regardless, her leadership proved that astronomy in space made sense, leading to the achievements that have followed in the half century that has followed.

God speed, Nancy Roman.

New asteroid radar images

near-Earth asteroid 2003 SD220

Cool radar images! The set of radar images above of near-Earth asteroid 2003 SD220 were created by combining radar data from three different radar telescopes on Earth, Arecibo in Puerto Rico, Green Bank in West Virginia, and Goldstone in California. As the press release notes:

The asteroid will fly safely past Earth on Saturday, Dec. 22, at a distance of about 1.8 million miles (2.9 million kilometers). This will be the asteroid’s closest approach in more than 400 years and the closest until 2070, when the asteroid will safely approach Earth slightly closer.

The radar images reveal an asteroid with a length of at least one mile (1.6 kilometers) and a shape similar to that of the exposed portion of a hippopotamus wading in a river.

The images have a resolution of 12 feet per pixel, so a close look should be able to reveal any large boulders, should they exist. Instead, I see a soft surface that to me resembles the surface of a sand dune, floating unattached to anything in space.

Saturn’s rings are dying

Using new ground-based observations, scientists now predict that Saturn’s rings are dying at the fastest predicted rate, and will disappear within 300 million years, at the most.

Dr Tom Stallard, Associate Professor in Planetary Astronomy at the University of Leicester and Dr James O’Donoghue, who studied for his PhD at the University of Leicester, have found that Saturn’s rings are dying at the maximum rate estimated from Voyager 1 and 2 observations made decades ago.

The rings of ice are being pulled into Saturn by gravity as particles of ice under the influence of Saturn’s magnetic field. Dr O’Donoghue, who now works at NASA’s Goddard Space Flight Center in Greenbelt, Maryland said: “We estimate that this ‘ring rain’ drains the equivalent of an Olympic-sized swimming pool from Saturn’s rings in half an hour. The entire ring system will be gone in 300 million years.”

Dr O’Donoghue believes that the rings could even disappear quicker than this. “Add to this the Cassini-spacecraft detected ring-material falling into Saturn’s equator, and the rings have less than 100 million years to live.”

Over the decades I have read numerous papers by scientists saying that rings this bright and large must be a relatively short-lived event, and that we are lucky to have seen them. This research only reinforces this conclusion.

At the same time, we do not yet know the frequency or the cause of the events that give rise such bright rings. It could be that such rings are short-lived, but happen frequently enough that it is still not rare to see them in any solar system. And we won’t know this until we get a more complete census of many solar systems, seen up-close.

Astronomers discover most distant solar system object so far

Worlds without end: Astronomers have discovered a dwarf planet about 300 miles in diameter orbiting the Sun at a distance of 120 astronomical units, making it the most distant solar system object discovered so far.

“2018 VG18 is much more distant and slower moving than any other observed Solar System object, so it will take a few years to fully determine its orbit,” said Sheppard. “But it was found in a similar location on the sky to the other known extreme Solar System objects, suggesting it might have the same type of orbit that most of them do. The orbital similarities shown by many of the known small, distant Solar System bodies was the catalyst for our original assertion that there is a distant, massive planet at several hundred AU shepherding these smaller objects.”

“All that we currently know about 2018 VG18 is its extreme distance from the Sun, its approximate diameter, and its color,” added Tholen “Because 2018 VG18 is so distant, it orbits very slowly, likely taking more than 1,000 years to take one trip around the Sun.”

I guarantee there are more of these discoveries to come. Many more.

R.I.P. Riccardo Giacconi

The astronomy community is mourning the passing of Riccardo Giacconi, a pioneer in space X-ray astronomy as well as the first director of the Space Telescope Science Institute, which operates Hubble.

What made him an especially interesting man is that he initially strongly opposed Hubble, preferring the money be spent on X-ray space telescopes. When, during the writing of The Universe in a Mirror, I asked him what prompted his change of opinion that made him head of Hubble, he explained that he felt he “wasn’t being used.” The money for X-ray astronomy just wasn’t there, and rather than chase rainbows he decided to hitch his wagon to something that was certain to produce new science.

The irony is that it was Hubble’s success that probably helped generate the funding for later X-ray space telescopes, such as Chandra.,

Giacconi was a unique and brilliant man. His early X-ray instruments were built by a private commercial company he ran, not a university or NASA. In a sense he was following the classic and older American model here that was abandoned in the 1970s, and is only now beginning to see a resurgence.

The cameras that saved Hubble

Link here. It is the 25th anniversary this week of the space shuttle mission that installed the two cameras that fixed the mirror issue on the Hubble Space Telescope, and the press release at the link provides a nice short overview of that mission, and what was involved to make it happen.

Of course, for a much more detailed look at this story, you could also buy and read A Universe in a Mirror. There are a lot of very fascinating stories that no single press release can possibly mention that I described with glee in writing this book.

Four more gravitational wave detections

The uncertainty of science: The scientists running the LIGO gravitational wave detector have announced the detection of four more gravitational waves, bringing to eleven the total number so far observed.

During the first observing run O1, from September 12, 2015 to January 19, 2016, gravitational waves from three BBH mergers were detected. The second observing run, which lasted from November 30, 2016, to August 25, 2017, yielded a binary neutron star merger and seven additional binary black hole mergers, including the four new gravitational wave events being reported now. The new events are known as GW170729, GW170809, GW170818 and GW170823 based on the dates on which they were detected. With the detection of four additional BBH mergers the scientists learn more about the population of these binary systems in the universe and about the event rate for these types of coalescences.

The observed BBHs span a wide range of component masses, from 7.6 to 50.6 solar masses. The new event GW170729 is the most massive and distant gravitational-wave source ever observed. In this coalescence, which happened roughly 5 billion years ago, an equivalent energy of almost five solar masses was converted into gravitational radiation.

In two BBHs (GW151226 and GW170729) it is very likely that at least one of the merging black holes is spinning. One of the new events, GW170818, detected by the LIGO and Virgo observatories, was very precisely pinpointed in the sky. It is the best localized BBH to date: its position has been identified with a precision of 39 square degrees (195 times the apparent size of the full moon) in the northern celestial hemisphere. [emphasis mine]

The highlighted quote above illustrates the amount of uncertainty here. Though these appear to be gravitational waves, and have been confirmed in multiple ways, the data is very coarse, providing only a limited amount of basic information about each event. This limited information is still very valuable, and certainly advances our understanding of black holes and their formation, but it is important to recognize the limitations of that data.

Astronomers get best and earliest view of supernovae ever

Using ground-based telescopes as well as the space telescope Kepler astronomers have obtained their best and earliest view of a Type Ia supernova.

The supernova, named SN 2018oh, was brighter than expected over the first few days. The increased brightness is an indication that it slammed into a nearby companion star. This adds to the growing body of evidence that some, but not all, of these thermonuclear supernovae have a large companion star that triggers the explosion.

Las Cumbres Observatory (LCO), based in Goleta, California, is a global network of 21 robotic telescopes that obtained some of the best data characterizing the supernova in support of the NASA mission. Wenxiong Li, the lead author of one of three papers published today on the finding, was based at LCO when much of the research was underway. Five other LCO astronomers, who are affiliated with the University of California Santa Barbara (UCSB), also contributed to two of the papers.

Understanding the origins of Type Ia supernovae is critical because they are used as standard candles to map out distances in cosmology. They were used to discover Dark Energy, the mysterious force causing the universe to accelerate in its expansion. Astronomers have long known that a supernova is the explosion of a dense white dwarf star (A white dwarf has the mass of the sun, but only the radius of the Earth; one teaspoon of a white dwarf would weigh roughly 23000 pounds) What triggers the explosion is less well understood. One theory holds that the explosions are the merger of two white dwarf stars. Another is that the second star is not a white dwarf at all, but a normal-sized or even giant star that loses only some of its matter to the white dwarf to initiate the explosion. In this theory, the explosion then smashes into the surviving second star, causing the supernova to be exceedingly bright in its early hours.

Finding that Type Ia supernovae can be brighter than previously believed throws a wrench into the results that discovered dark energy, since those results made assumptions about the brightness and thus the distance of those supernovae. If the brightness of these supernovae are not as reliable as expected, they are also less of a standard candle for estimating distance.

Quasars that shut off

The uncertainty of science: Astronomers have discovered a class of quasars that suddenly turn off, something that no theory had predicted possible.

LaMassa, an astronomer now at the Space Telescope Science Institute, was mystified. Until that moment in 2014, she, like so many others, had expected quasars to be relatively stagnant. “Then you see these drastic changes within a human lifetime, and it’s pretty cool,” she said.

Confusion turned into excitement, and a hunt began to find more of these oddities. Although less luminous examples had already been seen, astronomers wanted to know if changes as dramatic as the one LaMassa discovered were common. It was no straightforward task, given that surveys tend not to go back and look at objects they have previously observed. But astronomers searched through archived data and discovered 50 to 100 more of what became known as “changing-look quasars.” Some of these have dimmed substantially more than LaMassa’s first example. Others have transitioned in the space of a month or two. And others, after disappearing, have reappeared again.

“It’s clear that the reason we weren’t finding these objects before is that we weren’t looking for them,” said Eric Morganson, an astronomer at the University of Illinois.

The article does a fine job of explaining the whole problem, including outlining the theories now being posited to explain these events. Bottom line: the universe is always more complicated that expected by initial observations.

Another star found that dims strangely like Tabby’s Star

Astronomers have found a second star that dims in an inexplicable manner, like Tabby’s Star.

Known as VVV-WIT-07, the star appears to be much older and redder than our sun, although the amount of interstellar dust between our solar system and the star’s home closer to the galactic center makes exact classification and distance measurements very difficult. What is certain is that in the summer of 2012, the object’s brightness faded slightly for 11 days, then plummeted over the following 48 days, suggesting that something blocked more than three quarters of the star’s light streaming toward Earth. But what could that “something” be?

According to Eric Mamajek, an astrophysicist at the University of Rochester unaffiliated with the VVV survey, such a profound degree of dimming suggests that a staggeringly large object or group of objects is blocking the light. “It’s got to be over a million kilometers wide, and very dense to be able to block that much starlight,” he says. Mamajek should know: He led the team that discovered J1407, another strange star periodically eclipsed by a planet-sized object thought to boast a massive ring system some 200 times broader than that of Saturn. In this latest case, he says, the strange signals from VVV-WIT-07 could arise from clumps or clouds of material passing between Earth and the star, though he cautioned that the data were preliminary and more observations are required.

Tabetha Boyajian agrees. Boyajian, an astronomer at Louisiana State University, was the lead author for the 2015 paper announcing the strange dimming of KIC 8462852, also known as Tabby’s Star, an unusual object first spotted by NASA’s Kepler Space Telescope. VVV-WIT-07 would have to harbor “a very peculiar kind of dust cloud to make these kinds of dips,” Boyajian says. Boyajian’s study helped spark a surge of public interest in Tabby’s Star because the star’s unusual dimming could be seen as evidence of an alien civilization building an artificial structure that soaked up the star’s light. More conventional explanations include a swarm of comets or fragments from a shattered planet, both of which would create significant clouds of dust and debris that could also occlude the star’s light. But, so far, no simple single explanation fits the complexities of the dimming seen around the star; researchers remain stymied in their attempts to understand the true nature of the strange dimming of Tabby’s Star.

As is usually the case in these cases, the explanation will not be aliens. That it could be, however, is what makes it so intriguing.

New Wolf-Rayet star discovered 8,000 light years away

Astronomers have discovered a Wolf-Rayet star — the kind of star thought to eventually cause major explosions — 8,000 light years away.

The binary star system, containing a pair of massive ‘Wolf-Rayet’ stars, has been discovered by an international team of researchers, including Professor Paul Crowther from the University of Sheffield, and published in Nature Astronomy.

Wolf-Rayet stars are amongst the hottest stars in the Universe, blast out powerful winds of hot gas, and represent the last stage in the evolution of the most massive stars prior to exploding as a supernova.

Located around 8,000 light years away – half a billion times further away than our Sun – the binary system is surrounded by a gigantic dust cloud. The collision between the winds of the two stars can form dust, which takes on elegant spiral pinwheel shapes as the stars orbit each other.

Expect to see a number of news articles hinting at how this system is a deadly threat to Earth. It is not. For one thing, it is too far away for any supernovae or gamma ray burst to cause serious harm here. Second, it will be a long time before any of that is going to happen.

Wolf-Rayet stars however are rare, and being able to study them helps astronomers better understand the life and death of stars. Having another so relatively close is a boon to astronomers.

Computer model suggests universe has innumerable exomoons

A supercomputer simulation has shown that ice-giant planets like Uranus and Neptune can have their own dust disk during formation, thus allowing these kinds of planets to also form moons.

“So far it was believed that Uranus and Neptune are too light to form such a disk,” says the astrophysicist. Therefore, it was considered that the moons of Uranus could have formed after a cosmic collision – like our own moon, also a relatively infrequent event as the capture. Now the researchers who are also members of the NCCR PlanetS were able to refute this previous idea. Their extremely complex computer simulations reveal that in fact Uranus and Neptune were making their own gas-dust disk while they were still forming. The calculations generated icy moons in-situ, that are very similar in composition with the current Uranian satellites. From the simulations performed by the supercomputer called “Mönch” at CSCS it is clear that Neptune originally also was orbited by a Uranus-like, multiple moon system, but this must have been wiped out during the capture of Triton.

The new study has a much wider impact on moons in general, than only on our Solar System formation history. “If ice giants can also form their own satellites, that means that the population of moons in the Universe is much more abundant than previously thought,” summarizes Dr.Szulágyi.Ice giants and mini-Neptune planets are often discovered by exoplanet surveys, so this planet mass category is very frequent. “We can therefore expect many more exomoon discoveries in the next decade,” the astrophysicist says.

I actually don’t believe the assumption posited here that scientists previously believed Uranus and Neptune were too light to form disks. I think many astronomers might have believed that, while many others remained unsure, since it is more intuitive to expect such disks to form as these gas giants formed.

Either way, this computer model lends weight to those who believe the universe is littered with planets and moons, everywhere, many of which will exist in the habitable zones of all kinds of stars. These planets and moons might not have life, but they will be places we could live, when we begin colonizing interstellar space.

Looking at the south pole of the Milky Way

Link here. The link provides instructions for finding the spot in the sky that corresponds to the south pole of the galaxy, pointing in a perpendicular direction away from its center.

No star marks the position. It sits in the faint southern constellation of Sculptor, the sculptor’s studio, hence its identification is intellectual rather than sensorial.

This is the case of the dog that did not bark. The reason there is little to see there is that you will be looking down out of the plane of the galaxy, in a direction with the fewest stars to see. The view is therefore looking out of our galaxy, at intergalactic space, vast and empty.

Astronomers identify first progenitor star for Type 1C supernovae

Astronomers have for the first time identified a progenitor star for a Type 1C supernovae.

[The search for supernovae progenitor stars has found] a few pre-supernova stars. But the doomed stars for one class of supernova have eluded discovery: the hefty stars that explode as Type Ic supernovas. These stars, weighing more than 30 times our Sun’s mass, lose their hydrogen and helium layers before their cataclysmic death. Researchers thought they should be easy to find because they are big and bright. However, they have come up empty. Finally, in 2017, astronomers got lucky. A nearby star ended its life as a Type Ic supernova. Two teams of researchers pored through the archive of Hubble images to uncover the putative precursor star in pre-explosion photos taken in 2007. The supernova, catalogued as SN 2017ein, appeared near the center of the nearby spiral galaxy NGC 3938, located roughly 65 million light-years away.

An analysis of the candidate star’s colors shows that it is blue and extremely hot. Based on that assessment, both teams suggest two possibilities for the source’s identity. The progenitor could be a single star between 45 and 55 times more massive than our Sun. Another idea is that it could have been a binary-star system in which one of the stars weighs between 60 and 80 times our Sun’s mass and the other roughly 48 solar masses. In this latter scenario, the stars are orbiting closely and interact with each other. The more massive star is stripped of its hydrogen and helium layers by the close companion, and eventually explodes as a supernova.

As can be seen by the quote above, identifying the star that exploded still leaves much unknown, including whether the star is a single or a binary. Still, they finally have some idea what kind of star erupts in a Type IIC supernovae, which will help constrain the theories for explaining the cause of these explosions.

Note also that this identification will not be confirmed until the supernova itself completely fades in about two years. They might find when that happens that the candidate progenitor is still there, meaning it was not the progenitor of the supernova at all.

Null result from Spitzer suggests Oumuamua was small

The uncertainty of science: The inability of the infrared Spitzer Space Telescope to detect the interstellar object Oumuamua as it exited the solar system suggests the object is small.

The fact that ‘Oumuamua was too faint for Spitzer to detect sets a limit on the object’s total surface area. However, since the non-detection can’t be used to infer shape, the size limits are presented as what ‘Oumuamua’s diameter would be if it were spherical. Using three separate models that make slightly different assumptions about the object’s composition, Spitzer’s non-detection limited ‘Oumuamua’s “spherical diameter” to 1,440 feet (440 meters), 460 feet (140 meters) or perhaps as little as 320 feet (100 meters). The wide range of results stems from the assumptions about ‘Oumuamua’s composition, which influences how visible (or faint) it would appear to Spitzer were it a particular size.

The new study also suggests that ‘Oumuamua may be up to 10 times more reflective than the comets that reside in our solar system – a surprising result, according to the paper’s authors.

These results fit the models that explain Oumuamua’s fluctuations in speed as caused by the out gassing of material, like a comet. They also do not contradict the recent hypothesis that the object might have been an alien-built light sail.

The simple fact is that we do not have enough data to confirm any of these theories.

SuperEarth orbiting Barnard’s Star?

The uncertainty of science: Astronomers have discovered a candidate exoplanet orbiting Barnard’s Star, the closest single star to our solar system and the second closest stellar system after Alpha Centauri.

The planet candidate, named Barnard’s star b (or GJ 699 b), is a super-Earth with a minimum of 3.2 Earth masses. It orbits its cool red parent star every 233 days near the snow-line, a distance where water would be frozen. In the absence of an atmosphere, its temperature is likely to be about -150 ºC, which makes it unlikely that the planet can sustain liquid water on its surface. However, its characteristics make it an excellent target for direct imaging using the next generation of instruments such as NASA’s Wide Field InfraRed Survey Telescope (WFIRST, [3]), and maybe with observations from the ESA mission Gaia [4].

The reason I put a question mark in the headline is that this is not the first time a candidate exoplanet has been proposed to orbit Barnard’s Star. In the 1960s astronomer Peter van de Kemp claimed the star had at least one gas giant orbiting it every 24 years. It was later found that the periodic motion variations he measured were due to “to an artifact of maintenance and upgrade work” at the telescope he was using.

The result above has not been confirmed by other means, so they must list this superEarth as a candidate exoplanet. More observations are necessary to confirm it.

Neutron star merger caused gravitational wave?

The uncertainty of science: Astronomers now believe that one of the half dozen or so gravitational waves detected by LIGO was likely caused by the merger of two neutron stars.

One of these, GW170817, resulted from the merger of two stellar remnants known as neutron stars. These objects form after stars much more massive than the Sun explode as supernovae, leaving behind a core of material packed to extraordinary densities.

At the same time as the burst of gravitational waves from the merger, observatories detected emission in gamma rays, X-rays, ultraviolet, visible light, infrared and radio waves – an unprecedented observing campaign that confirmed the location and nature of the source.

The initial observations of GW170817 suggested that the two neutron stars merged into a black hole, an object with a gravitational field so powerful that not even light can travel quickly enough to escape its grasp.

While intriguing, this result is uncertain, and based on many assumptions.

LSST’s giant coating chamber arrives in Chile

The giant coating chamber that will be used to coat the mirrors for the Large Synoptic Survey Telescope has arrived in Chile.

The Coating Chamber and its associated equipment will share this level with the camera maintenance rooms, the vertical platform lift, and the shipping and receiving area. The Coating Chamber will be used to coat LSST’s mirrors when they arrive on Cerro Pachón, and to re-coat the mirrors periodically during Operations.

LSST will conduct a 10-year survey, and during this period its mirrors will be exposed to the elements each night as the telescope surveys the sky through the open side of the observatory dome. Over time the mirrors will get dusty, and the mirror coatings may develop small blemishes that eventually affect the telescope’s performance. To ensure that LSST continues to collect the sharpest possible images of the night sky, its mirrors will undergo periodic washing and recoating. It’s anticipated that the Primary/Tertiary Mirror (M1M3) will need to be recoated every two years, and the Secondary Mirror (M2) every five years, during the 10-year survey. Both the washing and recoating will be done inside the observatory; special equipment will be used to remove and transport the mirrors from the telescope to the washing station and coating chamber.

LSST will essentially be imaging the entire visible sky nightly, making it possible over time to track sudden events, such as supernovae, as they happen.

China still struggling to find scientists to run FAST radio telescope

China is still finding it difficult to hire the scientists necessary to run its FAST radio telescope, the largest single dish radio telescope in the world.

And why is that?

For job candidates, the major stumbling blocks often are financial incentives and research independence, researchers told the South China Morning Post. The telescope’s remote location also may give candidates pause.

George Smoot, a Hong Kong University of Science and Technology professor who won the Nobel Prize in physics in 2006, said candidates interested in working in a more developed setting might think twice about spending a lot of time in an area known for its traditional rural villages.

“Another issue is how much the Chinese Academy of Sciences will influence and direct activities there,” Smoot said. “It is an issue to people unless they have some straight link.” [emphasis mine]

It must always be remembered that nothing in China is done without the government’s approval. For western astronomers, used to having a great deal of independence, this fact makes working there somewhat unappealing.

Danish astronomers question gravitational wave detection

The uncertainty of science: A team of Danish astronomers have questioned the gravitational wave detection achieved in the past few years by the LIGO gravitational wave telescopes.

The details are complex and very much in dispute, and the position of these Danish astronomers is very much in the minority, but their doubts have not been dismissed, and illustrate well the best aspects science. The article also outlines how the physics community and the LIGO scientists have welcomed the skepticism, even as they have doubts about the claims of the Danish astronomers. This is the hallmark of good science, and lends weight to the work at LIGO.

1 28 29 30 31 32 72