Data from Voyager 2 suggests it is entering interstellar space
New data since August from Voyager 2 now suggests it is finally leaving the heliosphere of the solar system and entering interstellar space.
Since late August, the Cosmic Ray Subsystem instrument on Voyager 2 has measured about a 5 percent increase in the rate of cosmic rays hitting the spacecraft compared to early August. The probe’s Low-Energy Charged Particle instrument has detected a similar increase in higher-energy cosmic rays.
Cosmic rays are fast-moving particles that originate outside the solar system. Some of these cosmic rays are blocked by the heliosphere, so mission planners expect that Voyager 2 will measure an increase in the rate of cosmic rays as it approaches and crosses the boundary of the heliosphere.
In May 2012, Voyager 1 experienced an increase in the rate of cosmic rays similar to what Voyager 2 is now detecting. That was about three months before Voyager 1 crossed the heliopause and entered interstellar space.
The scientists warn that there is great uncertainty here, and that the actual transition into interstellar space might take longer than with Voyager 1 since Voyager 2 is traveling in a different direction and is leaving during a different time in the solar cycle.
New data since August from Voyager 2 now suggests it is finally leaving the heliosphere of the solar system and entering interstellar space.
Since late August, the Cosmic Ray Subsystem instrument on Voyager 2 has measured about a 5 percent increase in the rate of cosmic rays hitting the spacecraft compared to early August. The probe’s Low-Energy Charged Particle instrument has detected a similar increase in higher-energy cosmic rays.
Cosmic rays are fast-moving particles that originate outside the solar system. Some of these cosmic rays are blocked by the heliosphere, so mission planners expect that Voyager 2 will measure an increase in the rate of cosmic rays as it approaches and crosses the boundary of the heliosphere.
In May 2012, Voyager 1 experienced an increase in the rate of cosmic rays similar to what Voyager 2 is now detecting. That was about three months before Voyager 1 crossed the heliopause and entered interstellar space.
The scientists warn that there is great uncertainty here, and that the actual transition into interstellar space might take longer than with Voyager 1 since Voyager 2 is traveling in a different direction and is leaving during a different time in the solar cycle.