Spitzer spots asteroid collision

A monitoring program of a young star by the Spitzer Space Telescope has paid off with evidence of a major collision between asteroids in the debris disk that surrounds the star.

Scientists had been regularly tracking the star, called NGC 2547-ID8, when it surged with a huge amount of fresh dust between August 2012 and January 2013. “We think two big asteroids crashed into each other, creating a huge cloud of grains the size of very fine sand, which are now smashing themselves into smithereens and slowly leaking away from the star,” said lead author and graduate student Huan Meng of the University of Arizona, Tucson.

While dusty aftermaths of suspected asteroid collisions have been observed by Spitzer before, this is the first time scientists have collected data before and after a planetary system smashup. The viewing offers a glimpse into the violent process of making rocky planets like ours.

Did Stardust capture stardust?

Scientists now believe that the spacecraft Stardust captured seven particles from interstellar space during its seven year journey.

Inside the canister, a tennis racket-like sample collector tray captured the particles in silica aerogel as the spacecraft flew within 149 miles (about 240 kilometers) of a comet in January 2004. An opposite side of the tray holds interstellar dust particles captured by the spacecraft during its seven-year, three-billion-mile journey.

Scientists caution that additional tests must be done before they can say definitively that these are pieces of debris from interstellar space. But if they are, the particles could help explain the origin and evolution of interstellar dust. The particles are much more diverse in terms of chemical composition and structure than scientists expected. The smaller particles differ greatly from the larger ones and appear to have varying histories. Many of the larger particles have been described as having a fluffy structure, similar to a snowflake. [emphasis mine]

It appears that for these seven particles, the scientists conclude they are likely interstellar particles because of the speed in which they were traveling when captured as well as their make-up. Both suggest an origin outside the solar system.

However, we should be cautious about this. The data still remains tenuous and preliminary. More work obviously needs to be done to pin this down definitively. More information here.

Rosetta detects its first dust grains

67P/C-G on August 12, 2014

The Rosetta science team announced today that the spacecraft’s Grain Impact Analyser and Dust Accumulator (GIADA) has captured its first dust grains from Comet 67P/C-G.

Earlier this month, GIADA detected the first four dust grains in its Impact Sensor. The first detection was made on 1 August, when Rosetta was 814 km from 67P/C-G, and about 543 million kilometres from the Sun. Further impacts from three more dust grains were detected on 2, 4, and 5 August, at distances of 603, 286, and 179 km from the comet, respectively.

There is still too little data to come to any firm conclusions about the density and make-up of the coma, but this announcement confirms that the instrument is working as designed. When the comet zips past the Sun at its closest point on August 13, 2015, this instrument will then be able to give us a very good assessment of this particular comet’s behavior as it slowly evaporates.

Meanwhile, the images keep coming. The picture at the top of the post was taken on August 12 from about 64 miles.

The Milky Way’s most distant stars

Astronomers have discovered the two most distant stars of the Milky Way.

Both stars are red giants, aging suns that shine so brightly observers can see them from afar. One star is about 890,000 light-years from Earth in the constellation Pisces—33 times farther from the Milky Way’s center than we are and well beyond the edge of the galactic disk. The only other Milky Way member at a comparable distance is a small galaxy named Leo I, which orbits ours at a distance of 850,000 light-years. If the star in Pisces revolves on a circular path as fast as we do, it takes some eight billion years to complete a single orbit around the galaxy. That’s more than half the age of the universe.

The other newfound star is about 780,000 light-years distant in the constellation Gemini and more than a million light-years from the other star. For comparison, the previous record-breaking individual star was only about half a million light-years from Earth.

Both stars are so far outside the galaxy’s disk that it is quite possible that they are not part of the Milky Way at all.

Another Rosetta closeup of 67P/C-G

67P on August 8

The above image is not the most recent daily image from Rosetta, but it is the most interesting of the last three.

It shows the side of the comet nucleus that has not been featured in most images, as the topographical differences between its two sections is not as distinctly highlighted. What is highlighted is the neck that connects the two sections, lighter colored and thus likely made up of less dusty ice.

Also of interest here is the circular features on the larger bottom section. These certainly resemble craters, and are likely remnants of early impacts that are now been corroded away as the nucleus’s ice particles evaporate off the surface. The scientific question here is this: Why are crater features more evident on this side and section of the comet nucleus than on other areas of its surface?

Rosetta arrives

Rosetta has successfully achieved orbit around Comet 67P/C-G and has transmitted its first close up images. More information here and here about the rendezvous and what science the mission scientists plan to do as they orbit the comet.

The image below is looking down and past the comet’s smaller component as it casts a shadow on the neck and the larger component beyond. As with the earlier images, the comet’s pitted and corroded surface, lacking any obvious craters, is reminiscent to me of a pile of dirty snow that has been dissolving away. In fact, when I lived in New York I would see this kind of look every winter. When the city would get a big snowfall snowplows would push it into large mounds on the side of the road. As time passed these piles would get dirty from the city’s soot and grime, and also slowly melt away. After several weeks it would look almost exactly like the surface of Comet 67P/C-G.

The images and data that will come down from Rosetta over the next year and half as it orbits the comet in its journey around the Sun will be most fascinating. Stay tuned!

67P/C-G up close

Eta Carinae’s next big show

Astronomers are gearing up to observe the next binary fly-by of Eta Carinae’s companion star over the next few weeks.

A binary system, η Carinae has two stars that swing past one another every 5.5 years. The bigger star — some 90 times the mass of the Sun — is incredibly unstable, always seemingly on the verge of blowing up. When the smaller companion star makes its closest approach to the primary star, as is happening now, the interaction between the two triggers violent changes in the high-energy radiation pouring out of the system.

Astronomers are watching the show in the hope of learning what drives this enigmatic system. In the 1840s, η Carinae had a mysterious eruption; in recent decades, it has again brightened unexpectedly. “The star is in an awfully deranged state, and no one knows why,” says Kris Davidson, an astronomer at the University of Minnesota in Minneapolis.

Eta Carinae is also famous because it was one of the first objects imaged by Hubble after its repair in 1993, and was thus the first stellar explosion ever caught on camera in a visually sharp and clear manner. (See my book The Universe in a Mirror for that fascinating story.)

Comet 67P/C-G at 126 miles

Comet 67P/C-G at 126 miles

The image above was taken by Rosetta on August 4 from only 126 miles (234 kilometers). Unlike earlier images, this image is raw, uncropped and unprocessed. All I have done is rescale it to fit on my webpage. As they explain at the link,

As you can see, the comet is not centred in the full-frame image. This is a result of the rendezvous burn conducted the previous day, which adjusted Rosetta’s trajectory towards the comet. This effect is corrected for in the commands sent to the spacecraft after the new orbit has been determined.

The science team also notes that beginning tomorrow, the comet will be close enough that they will no longer have to provide a cropped close-up using the navigation camera and that this uncropped raw version will be sufficient.

Rendezvous and orbital insertion on Wednesday!

An exoplanet that was once like a star

Astronomers, using WISE data, have discovered a strange exoplanet that is now as cool as a rocky planet, but was once as hot as a red dwarf star.

The current temperature of the object is 100-150 degrees Celsius, intermediate between that of the Earth and Venus. But the object shows evidence of a possible ancient origin, implying that a large change in temperature has taken place. In the past this object would have been as hot as a star for many millions of years.

Called WISE J0304-2705, the object is a member of the recently established “Y dwarf” class – the coolest stellar temperature class yet defined, added to the end of the sequence OBAFGKMLT (for historical reasons this is not in alphabetical order but follows a decline in temperature from O to T). Although its temperature is not far off that of our own world, the object is not like the rocky Earth-like planets and instead is a giant ball of gas like Jupiter.

As cool as this discovery is (no pun intended), I am most enlightened by the information in the second paragraph above. I had not realized that astronomers had added L, T, and Y classes to the low temperature end of their stellar classification system. For those new to astronomy, you remember the sequence of the first seven classes with the phrase “O Be A Fine Girl Kiss Me”. I wonder what how we can amend this phrase to include the L, T, Y, classes?

Today’s Comet 67P image

Comet 67P on August 2

The image above was taken on August 2 using Rosetta’s navigation camera. It has been processed by the science team to bring out the details. I have also rotated it to match the August 1 image taken at a distance of 620 miles that was taken by Rosetta’s OSIRIS narrow angle camera, designed to do the actual science.

You can see that the navigation camera does a pretty good job on its own of capturing the comet’s nucleus. Both images show that the instruments are working perfectly, and thus tell us that the next few months will be quite spectacular after Rosetta goes into orbit in three days, followed in November by the landing of Philae somewhere on the comet’s surface.

If you download both images and then switch back and forth between them you can get a better feel for the geometry of the surface features.

Comet 67P from 1000 k

67P from 1000 kilometers

Above is a new image of Comet 67P as seen from about 1000 kilometers, or about 620 miles, released by the Rosetta science team today. The image was taken on August 1 and has been processed somewhat to bring out the details. The black spot near the junction between the nucleus’s two sections is not real but an artifact of the camera’s CCD.

This image is the first real clear and sharp look at the nucleus, and what it shows us is a surface quite different from the many other asteroids that science probes have imaged close-up in the past. From this angle there are far few craters visible then is normally seen on asteroids, and the surface has complex roughness and pitted look that I suspect the planetary geologists are right now scratching their heads about and waving their arms trying to explain. My first guess, which no one should take too seriously, is that as material vents off the comet when it gets close to the Sun it leaves behind these scars.

One more thing: If you go here you can see a number of additional image releases in the last 24 hours, all fascinating. This link explains that the features that looked like craters in earlier images were actually artifacts from the camera’s CCD.

A Hubble Space Telescope status report

Five years after the last shuttle repair mission, the Hubble Space Telescope continues to operate almost perfectly.

Jeletic said other than a single gyro failure, the observatory is operating in near-flawless fashion five years after the final shuttle crew departed. “Batteries are fine, solar arrays are fine, all the communications equipment is fine, we don’t see any glitches with the computers, the instruments are all fine,” he said. “In fact, an interesting statistic, the Advanced Camera for Surveys, which was repaired by the astronauts during the last servicing mission, that’s actually now run longer on the repair than it did originally for the Wide Field Camera part of it.”

The ACS, like the repaired Space Telescope Imaging Spectrograph, no longer has any internal redundancy. “It’s amazing. It truly is,” Jeletic said. “Given all the things that can fail, a lot of people were hoping for one or two years of continued work with it. Now we’ve gotten over five.” Likewise, the Space Telescope Imaging Spectrograph, which also is operating in “single-string” mode, is still going strong.

When they completed the 2009 servicing mission, the goal was to give Hubble five more years of operation. They’ve done that, and are now looking to keep the telescope going till at least 2020, marking 30 years in orbit.

The only issue, not surprisingly, is the failure of one of the six gyros on board. These have traditionally been the telescope’s biggest problem, and have been replaced twice over during shuttle missions. Three of today’s six however are using a new design which will hopefully extend their life significantly.

Fermi proves that novae produce gamma rays

The Fermi Gamma-Ray Space Telescope has discovered that novae, small scale stellar explosions similar to some supernovae but far less powerful, also produce gamma rays when they explode.

A nova is a sudden, short-lived brightening of an otherwise inconspicuous star caused by a thermonuclear explosion on the surface of a white dwarf, a compact star not much larger than Earth. Each nova explosion releases up to 100,000 times the annual energy output of our sun. Prior to Fermi, no one suspected these outbursts were capable of producing high-energy gamma rays, emission with energy levels millions of times greater than visible light and usually associated with far more powerful cosmic blasts.

What is significant about this is that it demonstrates a solid link between novae and supernovae, since only recently have scientists shown that some supernovae also produce gamma ray bursts. It suggests that the two explosions are produced by somewhat similar processes, but at very different scales. This fact will have important ramifications in the study of stellar evolution and the death of stars. For example, some nova stars often go nova repeatedly. Other data suggest that some more powerful eruptions can be recurrent as well. Extending this recurrent pattern to supernova suggests many new theoretical possibilities.

The Milky Way shrinks

The uncertainty of science: New research by astronomers suggests that the Milky Way is about half as massive as previously estimated.

In the sixties I remember astronomers claiming that the Milky Way was twice as big as Andromeda. Then it was considered half as big. Most recently it was considered about the same size. This new research makes it half as big as Andromeda again.

In other words, the data is very uncertain, and the scientists really don’t have a good handle on it. None of these conclusions should be taken very seriously. All we really know at this point is that the Milky Way and Andromeda are approximately comparable.

Gaia commissioning complete

After several months of in-orbit analysis, engineers have declared the European space telescope Gaia ready to begin research.

There have been several issues that had raised concerns, but from the article it sounds as if the engineers have either corrected the problems or have found ways to overcome or mitigate them.

Gaia will measure the movement and location of a billion stars, allowing astronomers to map the Milky Way better than ever before.

New Rosetta comet images

New images from Rosetta have a resolution of 100 meters per pixel and are finding that the neck connecting the comet’s two sections is apparently much brighter than the rest of the nucleus.

As earlier images had already shown, 67P may consist of two parts: a smaller head connected to a larger body. The connecting region, the neck, is proving to be especially intriguing. “The only thing we know for sure at this point is that this neck region appears brighter compared to the head and body of the nucleus”, says OSIRIS Principal Investigator Holger Sierks from the Max-Planck-Institute for Solar System Research (MPS) in Germany. This collar-like appearance could be caused by differences in material or grain size or could be a topographical effect.

It looks like this comet is going to turn out to be one of the most fascinating objects any space probe has visited in a long time.

More images from Rosetta

67P

The comet that Rosetta will orbit is getting stranger and stranger, with new images suggesting that it is really two objects stuck together.

The pictures show that 67P/Churyumov-Gerasimenko appears to be not one but two objects joined together. It is what scientists call a “contact binary”. How the comet came to take this form is unknown. It is possible that 67P suffered a major fracture at some point in its past; it is also possible the two parts have totally different origins.

What is clear is that the European Space Agency (Esa) mission team now has additional and unexpected considerations as it plans how to land on the comet later this year – not least, which part of the comet should be chosen for contact?

Fast radio pulses exist, come from outside the galaxy, and no one knows what they are

A new astronomical mystery: The Arecibo radio telescope has confirmed the existence of fast radio pulses.

Fast radio bursts (FRBs) are bright flashes of radio waves that last only a few thousandths of a second. Scientists using the Parkes Observatory in Australia have recorded such events for the first time, but the lack of any similar findings by other facilities led to speculation that the Australian instrument might have been picking up signals originating from sources on or near Earth. The discovery at Arecibo is the first detection of a fast radio burst using an instrument other than the Parkes radio telescope. The position of the radio burst is in the direction of the constellation Auriga in the Northern sky. …

“Our result is important because it eliminates any doubt that these radio bursts are truly of cosmic origin,” continues Victoria Kaspi, an astrophysics professor at McGill University in Montreal and Principal Investigator for the pulsar-survey project that detected this fast radio burst. “The radio waves show every sign of having come from far outside our galaxy – a really exciting prospect.”

Exactly what may be causing such radio bursts represents a major new enigma for astrophysicists. Possibilities include a range of exotic astrophysical objects, such as evaporating black holes, mergers of neutron stars, or flares from magnetars — a type of neutron star with extremely powerful magnetic fields.

Be warned: All of the above theories could also be wrong. These fast radio flashes could just as easily turn out to be something entirely unpredicted.

Rosetta snaps more comet pictures

rotating comet nucleus

Rosetta’s new images of Comet 67P/Churyumov-Gerasimenko show the very irregular shape and rotation of its nucleus.

These images were taken on July 4 from a distance of only 23,000 miles. The rendezvous is expected in early August, with the touchdown of Rosetta’s landing probe Philae sometime in November after they have done a reconnaissance of the nucleus to pick a landing spot.

A source for the most powerful cosmic rays?

Astronomers think they have discovered a region in the sky, within or near the Milky Way, which might be the source of the most energetic cosmic rays

Nobody knows how ultra–high-energy cosmic rays—mainly protons or heavier atomic nuclei—acquire energies millions of times higher than have been achieved with humanmade particle accelerators. (Physicists dubbed one of the first ones observed the “Oh-My-God particle.”) Lower energy cosmic rays are thought to spring from the lingering remnants of stellar explosions called supernovas. But such clouds are far too small to produce the highest energy cosmic rays. Instead, theorists generally expect that the most energetic cosmic rays rev up over millions of years in unidentified accelerators the size of galaxies.

The Telescope Array aims to help solve that mystery. When a high-energy cosmic array strikes the atmosphere, it disappears in an avalanche of lower energy particles. Those particles trigger the detectors in the array, enabling researchers to deduce the direction and energy of the original cosmic ray. From 2008 to 2013, researchers spotted 72 cosmic rays with energies above 57 exaelectron volts—15 million times the highest energy achieved with a particle accelerator. And 19 of them appear to cluster in a hotspot in the sky about 20° in radius, as Hiroyuki Sagawa, a co-representative for the Telescope Array team from the University of Tokyo, reported today in a press conference at the university. [emphasis mine]

The low number of detections, 19 out of 72 total, that seem to come from this wide 20 degree region, suggests that this report falls most certainly under the heading of “the uncertainty of science.” I would not be surprised at all if this conclusion does not stand up after further research.

Nonetheless, the article is worth reading because it outlines nicely this astronomical mystery. Something out there accelerates these particles to these high energies, and astronomers do not yet know what that something is.

Problems with the European Gaia space telescope

Shades of Hubble: The first data from Europe’s Gaia space telescope, launched to map a billion Milky Way stars, will be delayed 9 months while engineers grapple with several problems.

Gaia managers started taking test images early this year, but soon noticed three issues. For one, more light than anticipated is bending around the 10-metre sunshield and entering the telescope.

Small amounts of water trapped in the spacecraft before launch are being released now that the telescope is in the vacuum of space, and more ice than calculated is accumulating on the telescope’s mirrors. In addition, the telescope itself is expanding and contracting by a few dozen nanometres more than expected because of thermal variations.

Mission managers say the number of stars detected will remain the same even if these complications remain untreated, but the accuracy in measurements of the fainter stars will suffer.

Unlike Hubble, however, there is no way to send a shuttle and a team of astronauts to Gaia to fix it. And it sounds like these issues will have an impact on the telescope’s abilities to gather its intended data.

This story raises my hackles for another reason. Gaia was a very technically challenging space telescope to build, but it was far easier and less cutting edge than the James Webb Space Telescope. It also cost far less. What will happen when Webb gets launched later this decade? How likely is it to have similar issues? Based on a story I just completed for Sky & Telescope on the difficulties of building ground-based telescopes, I’d say Webb is very likely to have similar problems, with no way to fix them. The American astronomy community could then be faced with the loss of two decades of research because they had put all the eggs into Webb’s basket, and thus had no money to build anything else.

1 44 45 46 47 48 72