ESA awards contract to Italian company to provide an ocean landing platform

Avio's proposed reusable upper stage
Click for original.

The European Space Agency (ESA) has awarded the Italian company Ingegneria Dei Sistemi (IDS) a contract to build an ocean vessel for recovering the planned reusable test upper stage being built by the Italian rocket company Avio, as shown in the graphic to the right.

In late September, ESA awarded a €40 million contract to Avio for the design of a reusable rocket upper stage. The project scope encompasses preliminary design work, including system requirements and technological solutions, for both the launch system and the ground segment. According to the agency, the project has a number of potential applications, including as an evolution of Avio’s Vega family of rockets.

On 15 October, IDS announced that it had been awarded the contract to design the project’s recovery vessel, which falls under the systems ground segment. The company has subcontracted Italian naval systems consultancy Cetena and Norwegian shipbuilder Vard to assist with the project.

ESA very clearly is trying to encourage the development of reusable rockets by Europe’s private sector, but the nature of this particular program seems badly thought out. Rather than have Avio design the system in its entirety, in order to make it as efficient and profitable as possible, it appears ESA is micromanaging the design process, and thus bringing other subcontractors in who are outside Avio’s control. As a result, the final demo might work, but it is not likely it will be competitive with the private reusable rockets being built in the U.S. and elsewhere. Too many cooks in the kitchen.

South African red tape will likely delay Starlink there for years to come

According to an article in South Africa yesterday, regulatory red tape and political demands in South Africa will likely block approval of Starlink in that country for years to come, if not forever.

Minister of Communications and Digital Technologies Solly Malatsi gazetted a draft policy direction on the role of EEIPs [Equity Equivalent Investment Programme] in the Information and Communication Technologies (ICT) sector on 23 May 2025. He explained that rules requiring electronic communications service providers to have 30% historically disadvantaged ownership prevented some companies from contributing to the country’s transformation in ways other than traditional ownership.

The Broad-Based Black Economic Empowerment (B-BBEE) Act and the ICT Sector Code supported the use of EEIPs to allow qualifying multinationals to meet empowerment obligations through alternatives. These can include investing in local suppliers, enterprise and skills development, job creation, infrastructure support, research and innovation, digital inclusion initiatives, and funding for small businesses.

However, the Independent Communications Authority of South Africa’s (Icasa) ownership regulations do not provide for EEIPs.

In other words, the laws contradict each other, and to make it possible to issue any licenses for a foreign company like SpaceX, the government needs to resolve this conflict. That is expected to take years of political maneuvering.

Even if this issue is resolved, SpaceX has already said it would not agree to the racial quota system proposed. It has offered to instead provide Starlink for free to 5,000 schools. It is not clear if politicians in South Africa will consider that sufficient.

Thailand studying feasibility of establishing its own commercial spaceport

Thailand
Click for source.

Thailand’s government has begun a study to find out whether it makes financial and technical sense to establish its own commercial spaceport in that country.

The Geo-Informatics and Space Technology Development Agency (Public Organisation), or GISTDA, organised a seminar titled “Thailand’s Future Opportunities for Spaceport Development” on October 15 at iConsiam. The seminar aimed to establish a platform for exchanging views and gathering suggestions from all sectors regarding the future of a “Spaceport” in Thailand, underscoring a critical juncture for the country to elevate its presence on the global space stage fully.

Pakorn Apaphant, GISTDA Director, revealed that GISTDA is currently conducting a feasibility study for establishing a Spaceport in Thailand, in collaboration with the business consulting firm KPMG Phoomchai Business Advisory Ltd. The comprehensive study covers economic aspects, business strategy, environmental and social impacts, as well as a nationwide survey of potential sites to evaluate the most suitable location for future development.

As the map to the right shows, Thailand’s geography is not perfect. It has plenty of coast, in the country’s south, but at any location the trajectory of most launches would almost have to cross land of Thailand or other countries. Nonetheless, with the advent of reusable lower stages, such considerations will eventually become less of a concern.

Three launches since yesterday

The beat goes on. Since yesterday there were three launches, one by China and two by SpaceX.

First, China’s Long March 8A rocket placed the twelfth set of satellites in the Guowang internet constellation, eventually aiming to be 13,000 satellites strong. China’s state-run press did not specify the exact number of satellites. Based on previous launches using the Long March 8A, the number was likely nine, bringing the number of this constellation’s satellites now in orbit to 96.

The launch was from China’s coastal Wenchang spaceport, and had a flight path that dumped the lower stages of the rocket near islands in the Philippines.

Next, SpaceX placed 21 satellites into orbit for the Pentagon, its Falcon 9 rocket lifting off from Vandenberg in California. This was the second launched by SpaceX for this military communication constellation, dubbed Tranche-1, intended to be 158 satellites total. The first stage completed its seventh flight, landing on a drone ship in the Pacific. The fairing halves completed their third and fourth flights respectively.

Finally, SpaceX launched another 28 Starlink satellites, its Falcon 9 rocket lifting off from Cape Canaveral in Florida. The first stage completed its third flight, landing on a drone ship in the Atlantic.

The leaders in the 2025 launch race:

133 SpaceX
61 China
13 Russia
13 Rocket Lab

SpaceX now leads the rest of the world in successful launches, 133 to 102.

Indian rocket startup Skyroot hires Exolaunch to handle satellite integration and deployment

The Indian rocket startup Skyroot yesterday signed a partnership agreement with the company Exolaunch to handle the integration and deployment of satellites once its Vikram smallsat rocket begins launching.

Through this agreement, Exolaunch will integrate and deploy customer satellites on Skyroot’s Vikram series of launch vehicles, beginning with the Vikram-1 orbital missions. Exolaunch will provide its flight-proven deployment technologies for Skyroot customers across dedicated and rideshare launches. The partnership also includes the use of Exolaunch’s EXOtube payload stacks, designed to optimize multi-payload rideshare configurations, streamline constellation launches, increase mission flexibility, and enhance vehicle utilization.

While Skyroot has not yet launched, Exolaunch is very well established, having “a decade of flight heritage and 582 satellites launched across 39 missions to date.” Since Skyroot has no experience yet in these matters, having Exolaunch do it makes satellite companies more likely to buy space on its rocket.

Until recently Skyroot had been targeting a first launch before the end of this year. That schedule has now changed. According to the company’s webpage, that first launch is now scheduled sometime in 2026.

New Morgan Stanley report reflects Wall Street’s generally optimistic view of Rocket Lab

Rocket Lab's stock in 2025
Click for source.

Though Rocket Lab is still not in the black, a new positive analysis of the company this week from Morgan Stanley reflects Wall Street’s generally optimistic view of Rocket Lab during the past year.

Rocket Lab (NASDAQ:RKLB) had its price target raised by equities researchers at Morgan Stanley from $20.00 to $68.00 in a research report issued on Monday, Benzinga reports. The brokerage presently has an “equal weight” rating on the rocket manufacturer’s stock. Morgan Stanley’s price target would suggest a potential upside of 1.63% from the company’s current price.

The article at the link also notes that Morgan Stanley is not alone in giving Rocket Lab a positive report, and in fact in the past year it shows that the recommendations from many analysts to buy its stock have risen considerably. These positive reviews have been reflected in a steady rise in the company’s stock price in 2025, as shown by the graph on the right.

Nor are these reports written in a vacuum. In recent weeks Rocket Lab has signed a bunch of new launch contracts, some extending deals with old customers, some with new customers of some note.

Buying the stock of a startup like Rocket Lab always carries risk, but it appears Wall Street is beginning to see the future of this particular startup as very promising.

Orbital tug startup Impulse Space to develop its own unmanned lunar lander

Impulse's tug and proposed lunar lander
Click for original image.

The orbital tug startup Impulse Space, founded by Tom Mueller (one of SpaceX’s first engineers), is now proposing to build its own unmanned lunar lander, with a target for delivering six tons of cargo on two missions, starting in 2028.

Our proposed architecture combines our existing Helios kick stage and a new lunar lander, to be developed by our team in-house. Helios would launch on a standard medium- or heavy-lift rocket. Our lunar lander would ride as a payload on Helios. Once Helios and the lander are deployed in Low Earth Orbit (LEO), Helios serves as a cruise stage, transporting the lander to low lunar orbit within one week. The lunar lander then separates from Helios and descends to the surface of the Moon. By taking advantage of Helios’s high delta-v capabilities, this mission architecture doesn’t require in-space refueling.

This solution can bridge the existing cargo delivery gap by offering direct transportation of the necessary mass to kickstart infrastructure, resource utilization, and economic activities on the Moon. We’ve already begun engine development for our lunar lander solution, and we stand ready to execute as dictated by industry demand and interest.

With this Helios and Impulse-made lander combination, we estimate delivering up to 6 tons of payload mass to the Moon (across two missions) per year starting in 2028 at a cost-effective price point. Each Helios + lander combo would take approximately 3 tons of cargo to the Moon.

It appears the company has identified a need (transporting cargo to the Moon cheaply and quickly) that no one (including NASA) is presently considering. SpaceX will be able to do it with Starship. Blue Origin is also proposing to do it with various versions of its Blue Moon manned lander. Impulse has decided however that both of those spacecraft are too large and tied to SLS and Lunar Gateway, with Starship requiring refueling, that makes their cargo missions more costly than a direct mission. Impulse proposes a simpler option.

This decision is also another indication that the demand for low orbital tugs is not developing as expected. It appears satellite companies and the available rocket companies have worked out ways to get most of their satellites to the orbits they require without tugs.

It will be interesting to watch if this proposal gains traction. If it does, than it will likely encourage other orbital tug as well as the other lunar lander companies to propose their own alternatives.

Space Force approves Vandenberg environmental assessment, allowing SpaceX’s to launch as much as 100 times annually

Map of Vandenberg Space Force Base, showing SpaceX's two launchpads
Figure 2.1-1 of the final environmental assessment report

The Space Force on October 10, 2025 announced it has now finalized and approved the environmental assessment that will permit SpaceX’s to increase its launch rate at Vandenberg to as much as 100 times per year.

The DAF [Air Force] has decided to increase the annual Falcon launch cadence at VSFB [Vandenberg] through launch and landing operations at SLC-4 and SLC-6 [the two SpaceX launchpads], including modification of SLC-6 for Falcon 9 and Falcon Heavy launch vehicles to support future U.S. Government and commercial launch service needs. The overall launch cadence will increase from 50 Falcon 9 launches per year at SLC-4 to up to 100 launches per year for Falcon 9 and Falcon Heavy at both SLCs combined. Falcon Heavy, which has not previously launched from VSFB, would launch and land up to five times per year from and at SLC-6. The DAF will authorize SpaceX to construct a new hangar south of the HIF [SpaceX’s horizontal integration facility] and north of SLC-6 to support Falcon 9 and Falcon Heavy integration and processing.

You can read the full environmental assessment here [pdf]. The map to the right, from the assessment, shows the location at Vandenberg of the two SpaceX launch sites. SLC-4 (pronounced “slick-four”) is the pad SpaceX has been using for years to launch Falcon 9s. SLC-6 was originally built for the space shuttle but never used for that purpose. Subsequently ULA leased it to launch its Delta family of rockets. When that rocket was retired SpaceX won the lease to reconfigure the site for both Falcon 9 and Falcon Heavy launches.

The Space Force apparently decided to ignore the objections of the California Coastal Commission as well as a number of anti-Musk leftwing activist groups. And its decision is well grounded in facts. The report documents at length the lack of any consequential environmental impacts from the increase of launches, which is further supported by almost three quarters of a century of actual use.

The decision is also well founded in basic American culture and law. The Space Force as a government agency must act as a servant of the American people, in this case represented by the private company SpaceX. It must therefore do whatever it can to aid and support that company, not put up roadblocks because it doesn’t like what the company proposes.

At least under Trump, this is the approach the Space Force is taking. I fear what will happen if a Democrat regains the presidency, based on the radical and enthused communist make-up of that party today.

Three launches in the past day

Even as all eyes focused on SpaceX’s 11th test launch of Starship/Superheavy yesterday, there were three other launches in the past fourteen hours taking place on three different continents by China and two different American companies.

First, China placed a technology test satellite into orbit, its Long March 2D rocket lifting off from its Jiuquan spaceport in northwest China. The only information about the satellite is that it will test “new optical imaging.” No information at all was released on where the rocket’s lower stages, using very toxic hypergolic fuels, crashed inside China.

Next, SpaceX placed 24 of Amazon’s Kuiper satellites into orbit, its Falcon 9 rocket lifting off from Cape Canaveral in Florida. The first stage completed its second flight, landing on a drone ship in the Atlantic.

With this launch, Amazon now has 154 satellites in orbit, out of a planned constellation of about 3,200. Its FCC license requires it to have about 1,600 in orbit by July of ’26, but that goal seems increasingly unlikely to be met. With this launch SpaceX completed its three-launch contract for Amazon. It has contracts with ULA for 46 launches (having so far completed three in 2025), and that company appears ready to launch regularly in the coming months. Amazon’s other launch contracts with Blue Origin’s New Glenn (27 launches) and ArianeGroup’s Ariane-6 (18 launches) however are more uncertain. Neither company has achieved any launches on their contracts, and it is not clear when either company, especially Blue Origin, will ever begin regular launches.

Finally, this morning Rocket Lab placed the seventh radar satellite into orbit for the company Synspective, its Electron rocket lifting off from one of its two launchpads in New Zealand. Rocket Lab has a contract for another twenty Synspective launches over the next few years. The launch also featured a larger fairing that will give the company the ability to launch bigger-sized satellites with Electron.

The leaders in the 2025 launch race, now including yesterday’s Starship/Superheavy launch:

131 SpaceX
60 China
13 Russia
13 Rocket Lab

SpaceX now leads the rest of the world in successful launches, 131 to 101.

PLD issues detailed update on its preparations for first launch in 2026

The Spanish rocket startup PLD today released a detailed video update outlining the work it is doing designing and building its Miura-5 rocket for its first launch, now targeting 2026.

I have embedded that video below. Its engineers and managers describe and show in detail the hard metal they are cutting. Their goal is to produce one upper stage engine every two weeks by the end of this year. The company has already build eight tanks for both stages, and has even tested one tank to failure. PLD has also started construction of its launch site in French Guiana.

All in all, PLD seems moving aggressively towards that first launch, making it one of three European rocket startups on the brink of operations. The other two are Isar Aerospace and Rocket Factory Augsburg, both from Germany.

» Read more

Eleventh Starship/Superheavy a complete success

Starship and Superheavy during ascent
Starship and Superheavy during ascent today.

On the eleventh orbital test flight today of Starship/Superheavy, SpaceX basically achieved all its engineering goals, with both Superheavy and Starship completing their flights as planned, with Superheavy doing a soft vertical splashdown in the Gulf of Mexico, and Starship doing a soft vertical splashdown in the Indian Ocean.

The Superheavy flown was on its second flight, having flown on test flight #8. Of its 33 Raptor engines, 24 had flown previously. In returning, it successfully used a new configuration of engine burns, first firing thirteen engines, then six, then three.

More significant was Starship’s flight. The engineers had purposely left tiles off in some locations that would experience the greatest heat during re-entry, to find out if the ship could survive a loss of those tiles. It did, and did so in a truly remarkable manner, always flying in a controlled manner, even as it attempted a radical and previously untried banking maneuver as it approached the ocean in order to simulate a return to the launch tower chopsticks at Boca Chica.

Prior to splashdown and during its coast phase, Starship once again successfully tested the deployment of eight dummy Starlink satellites, as well as a relight of one of its Raptor engines to demonstrate it will be able to do a planned de-orbit burn once it enters a full orbit on future test flights.

Once again, the word to describe this flight is remarkable. While no else has yet been able to recover a first stage and reuse it, SpaceX has been doing it with its Falcon 9 for almost a decade, and doing it hundreds of times.

And now it has twice reused a Superheavy booster, out of only eleven test launches. Based on this and the last test flight, the company will almost certainly begin reusing Starship prototypes during next year’s orbital test flights, when it will begin flying full orbits using its third version of Starship, including returns to Boca Chica for chopstick tower catches. Furthermore, expect the deployment of real Starlink satellites on those missions.

The next mission should likely take place close to the end of this year, and it should likely be followed by additional flights about every two months.

The Liberty Bell
“Proclaim liberty throughout all the land unto all
the inhabitants thereof.” Photo credit: William Zhang

While politicians and media swamp creatures focus on the relatively inconsequential race to do an Apollo-like manned landing on the Moon, the real American space program is being run privately by SpaceX, and its goal is to not only go to Mars, but to do so in a manner that will quickly establish a human colony. Along the way the company will help facilitate that government space program, but only as it helps SpaceX learn better how to get humans to Mars.

Most significantly, SpaceX is doing its space program entirely on its own dime. It is being financed by the revenues coming in to the company from the now more than seven million subscribers to Starlink. And those numbers will only rise with time, as Starship begins launching the next generation of satellites with capabilities that will dwarf all of SpaceX’s competitors.

Once again, freedom, private enterprise, and the American dream wins. May all humans someday live under rules that will allow them the same possibilities.

Faced with loss of the federal gravy train, Lowell Observatory makes major changes

According to a press release last week, the Lowell Observatory in Arizona is now making major changes to it management and operations due to “declines in federal research funding.”

The new framework centers on two defining pursuits: Planetary Defense, safeguarding our world from cosmic hazards, and Exoplanetary Research, seeking to understand distant worlds and the potential for life beyond Earth.

Declines in federal research funding, coupled with uncertainty about future national priorities, have impacted research institutions across the country. At the same time, Lowell’s historic reliance on internal funding to sustain research is no longer a viable long-term model. To ensure stability and growth, the Observatory will focus its efforts on key scientific areas while building new endowments to support the scientists and technology that drive discovery.

Essentially, it can no longer depend on easy federal cash (thank you Donald Trump!), and thus needs to actually do real research work in fields that others consider important. It will also abandon its “traditional academic tenure system.” Scientists who use the facility will now have to earn that right, in a case-by-case basis. And such researchers will have to be funded by “private, endowed support.”

In other words, Lowell is returning to the model that had been used by American researchers for most of the nation’s history, until World War II, getting their funding from private sources rather than the federal teat.

We should expect therefore the work at Lowell to become more effective and focused, something it has not been for decades.

Watch the eleventh orbital test flight of SpaceX’s Starship/Superheavy rocket

The eleventh orbital test launch of Starship/Superheavy is scheduled for 6:15 (Central) today. It will be the last flight for version 2 of Starship, and will also include the second reuse of a Superheavy booster.

Starship will repeat its flight plan from the previous flight, testing the deployment of dummy Starlink satellites, the relighting of its Raptor engines once in orbit, and various new configurations of its thermal protection system. It will come down in the Indian Ocean, either controlled or not. Future flights will use version three, and quickly move towards orbital flights and a return to Boca Chica for a tower chopstick capture and later reuse.

Superheavy, which flew previously on the eighth test flight, will do more engine configuration tests on its return, and will attempt a soft vertical splashdown in the Gulf.

You can watch SpaceX’s X live stream at the link above. I have also embedded Space Affairs youtube feed below.
» Read more

Rocket Lab gets two-launch contract from Japan’s space agency JAXA

In what appears to be a significant slap at its own rockets (especially its delayed Epsilon-S rocket), Japan’s space agency JAXA this week signed a two-launch deal with the American rocket company Rocket Lab.

Launching from Rocket Lab Launch Complex 1 in New Zealand, the two Electron missions will deploy satellites for JAXA’s Innovative Satellite Technology Demonstration Program. The first launch, scheduled from December 2025, will deploy the agency’s RApid Innovative payload demonstration SatellitE-4 (RAISE-4) spacecraft, a single satellite that will demonstrate eight technologies developed by private companies, universities, and research institutions throughout Japan.

The second launch, scheduled for 2026, is a JAXA-manifested rideshare of eight separate spacecraft that includes educational small sats, an ocean monitoring satellite, a demonstration satellite for ultra-small multispectral cameras, and a deployable antenna that can be packed tightly using origami folding techniques and unfurled to 25 times its size.

Rocket Lab has previously won contracts from several private Japanese satellite companies (Q-Shu, Astroscale, ALE), but this I think is the first JAXA contract it has won. What makes it significant is that JAXA has always focused on using its own rockets, the large retired H2A and the new H3 as well as the smaller Epsilon-S. To go to an American company is somewhat unprecedented.

Though larger than Rocket Lab’s Electron rocket, Epsilon-S was being developed to compete for the same market. That development however has been plagued by failure, including explosions of engines during tests of both its upper and first stages in ’23 and ’24 respectively. After the second explosion JAXA announced in December 2024 the rocket’s first launch would not occur in the spring of 2025 as planned, but provided no additional information. Since then there have been no updates.

This Rocket Lab deal suggests the Epsilon program is in big trouble. In the long run however this might be a very good thing for both JAXA and Japan’s own nascent rocket industry. JAXA might finally be recognizing that building and owning its own rockets is not the best plan, that it would be better to use the capitalism model and simply be a customer buying the services from the private sector. At the moment Japan doesn’t yet have a viable commercial rocket sector, with only Mitsubishi having an operational commercial rocket, the H3 (mostly controlled by JAXA). There are a number of new startups however, including Interstellar, Honda, Space One, and Tispace, all of which have done tests of one kind or another. If JAXA is ready to abandon its own government rockets and buy the service from the private sector, those Japanese startups will start to prosper.

China launches three satellites from ocean platform

The Chinese pseudo-company Orienspace yesterday successfully placed three satellites into orbit, its solid-fueled Gravity-1 rocket lifting off from an ocean platform off the country’s northeast coast.

This was Orienspace’s second launch, both using its Gravity-1 rocket from the ocean. Of the three satellites, one was an Earth observation satellite, and the other two were part of the pseudo-company Geespace’s Geely constellation of satellites, though it is not clear if these are for its Internet-of-Things (IoT) constellation or for general communications. The IoT constellation already has 64 satellites in orbit out of a planned 240.

Another launch of China’s Long March 8A rocket was supposed to happen yesterday, but there is no indication in China’s state-run that it took place, nor any information about a rescheduled launch date. That state-run press also illustrated the pseudo nature of these Chinese companies by only mentioning Orienspace as an afterthought at the end of the article.

The leaders in the 2025 launch race:

129 SpaceX
59 China
13 Russia
12 Rocket Lab

SpaceX still leads the rest of the world in successful launches, 129 to 99. The company will try again this evening to launch its third mission for Amazon, placing a set of Kuiper satellites into orbit. Weather has scrubbed the past two attempts in the previous few days.

Orbital tug company Momentus gets two NASA contracts

The orbital tug startup Momentus yesterday announced that NASA has awarded it two contracts worth $7.6 million total to fly two experimental NASA payloads on its Vigoride tug.

One payload will test “test the ability to make semiconductor crystals in microgravity”, while the second will “test a rotating detonation rocket engine, a propulsion system designed to provide higher efficiency than traditional engines.” In this case the propellants used will be nitrous oxide and ethane.

Both will fly on the same Vigoride tug on a mission to be launched no earlier than October 2026. Momentus also says there is room for additional payloads on that mission.

It appears the increase in the number and launches of rockets has actually hurt the orbital tug business:

Momentus is among several companies that developed orbital transfer vehicles, or OTVs, like Vigoride to ferry spacecraft between orbits. They are designed to provide last-mile delivery to specific orbits for spacecraft launched on rideshare missions such as [SpaceX’s] Transporter [launches]. However, demand for such services has been slower to materialize than expected. “Candidly, that part of the market has not developed as much as people thought, say, five years ago,” [said John Rood, Momentus’ chief executive] during a panel at World Space Business Week in September. “The reason is many small manufacturers are multi-manifesting satellites to deploy a single plane with a single launcher.”

As a result, Momentus has focused on getting technology demonstration contracts such as the two above, with the tug acting more like a service module.

Canadian rocket startup Nordspace signs deal for its mission control center

Proposed Canadian spaceports
Proposed Canadian spaceports

The Canadian rocket startup Nordspace, which earlier this week signed a deal for another company to establish ground stations for its proposed Atlantic Spaceport, today signed an agreement with the company Kongsberg Geospatial to provide software for running its mission control center.

According to the news release TerraLens “will ingest data from multiple sensors to deliver real-time three-dimensional (3D) visualization of launch operations, range safety, decision support, and vehicle tracking. This will help streamline launch operations and enable deployment of critical space missions to orbit in under 48 hours.” Kongsberg said TerraLens builds on their “experience supporting range safety and mission-critical visualization for the Andøya Space and Defence project in Norway.”

Andøya is Norway’s new commercial spaceport that has been launching suborbital government rockets for decades.

Nordspace continues to move forward quickly, having been established only three years ago. It is putting the pieces together for its spaceport, and is testing both a small suborbital rocket and the engines for its proposed orbital Tundra rocket. Though the race is certainly not over, it does appear Nordspace will get to orbit ahead of the Nova Scotia spaceport that was first proposed in 2016.

AST SpaceMobile signs up Verizon to use its constellation for phone-to-satellite service

The startup AST SpaceMobile, which is building a constellation of satellites able to act as cell towers for smart phones, has now signed an agreement with Verizon to give its subscribers access to the service.

AST SpaceMobile’s shares closed up more than 8% Oct. 8 after Verizon joined AT&T in signing a definitive agreement to use its planned space-based cellular network, easing investor concerns about SpaceX’s aggressive push into the fledgling direct-to-device (D2D) market.

The deal enables Verizon to provide D2D connectivity to its customers from some point in 2026, building on a strategic partnership announced in May 2024 that included plans for a $100 million investment in AST.

As noted above, AST has now signed both Verizon and AT&T, two of the largest cellphone companies, strengthening its position considerably in its competition with SpaceX’s Starlink cell-to-satellite alternative. Both deals appear to allow these companies the ability to sign contracts with both AST and Starlink, so it is possible the competition won’t be as fierce initially as it appears. It is also possible that eventually they will pick one or the other, so neither company should be complacent.

AST presently has five of its BlueBird satellites in orbit out of its planned 45-60 satellite constellation, and hopes to have at least half the constellation in orbit by the end of ’26. So even if it wins its cellphone competition with SpaceX that rocket company will still likely make some money launching AST’s satellites.

Canadian rocket startup Nordspace obtains expanded ground station contract

Proposed Canadian spaceports
Proposed Canadian spaceports

The Canadian rocket startup Nordspace has signed an agreement with the ground station company C-Core to establish more tracking and communication facilities in conjunction with Nordspace’s launch plans at its Atlantic spaceport in Newfoundland.

NordSpace and C-CORE have signed a Memorandum of Understanding (MOU) that will see the companies work together in developing new ground stations across Canada with initial locations planned for the Atlantic Spaceport Complex (ASX) in St. Lawrence, Newfoundland and Labrador, and Inuvik, Northwest Territories.

With C-CORE being based in St. John’s, Newfoundland, and already established in providing ground station services, it seems like a natural collaboration that could benefit both companies. For NordSpace, which owns and is developing the Atlantic Spaceport Complex, this collaboration provides the potential for another type of revenue source as the company tries to diversify.

Nordspace has not yet launched, though its first suborbital test launch several weeks ago was scrubbed twice due to ground equipment fuel leaks. It has not yet announced another date for that suborbital test, but plans a static fire test in October of the engine it is building for its orbital Tundra rocket.

This company is only three years old, and appears to have leap-frogged past Canada’s other spaceport operation in Nova Scotia, which has been trying to get off the ground for almost a decade.

Stoke Space said to be raising as much as $500 million in private investment capital

Stoke's Nova rocket
Stoke’s Nova rocket, designed to be
completely reusable.

UPDATE: Stoke Space confirms the story, announcing today that it has raised $510 million in new capital.

According to anonymous sources, the rocket startup Stoke Space is in the process of raising as much as $500 million in private investment capital, with new $2 billion valuation for the company.

Stoke Space, one of the Seattle area’s up-and-coming space startups, is said to be raising hundreds of millions of dollars in a funding round that it hasn’t yet publicly acknowledged. A report about the round, based on two unidentified sources, was published today by The Information.

The Information quoted its sources as saying that the funding round could total as much as $500 million, and would value Stoke at nearly $2 billion. That figure would be roughly twice as much as the $944 million valuation that was cited by Pitchbook as of January. The round’s lead investor is said to be Thomas Tull’s United States Innovative Technology Fund.

Earlier this year Stoke raised $260 million, bringing its available capital to almost a half billion. If this story is confirmed, it means the company will have almost a billion in available cash on hand.

The design of Stoke’s Nova rocket is unique in that both the lower and upper stages will be reusable. The first stage will land vertically, like SpaceX’s Falcon 9. The upper stage meanwhile uses a radical nozzle design, a ring of tiny nozzles around the perimeter of a heat shield, to protect it during re-entry.

The company has said it plans the first launch in 2026, but has not been more specific as to when. If successful, this rocket will certainly become a major player, as it will be able to offer even lower prices than SpaceX because none of the rocket will be expendable.

SpaceX launches 28 Starlink satellites, reuses 1st stage for 29th time

SpaceX last night successfully launched another 28 Starlink satellites, its Falcon 9 rocket lifting off from Vandenberg Space Force Base in California.

The first stage, B1071, completed its 29th flight, landing on a drone ship in the Pacific. The present rankings for the most reflights of a rocket:

39 Discovery space shuttle
33 Atlantis space shuttle
30 Falcon 9 booster B1067
29 Falcon 9 booster B1071
28 Columbia space shuttle
28 Falcon 9 booster B1063
27 Falcon 9 booster B1069

Sources here and here.

Note also that SpaceX was able to refly this stage only 24 days after its previous flight. Even after 28 flights, the booster appears so robust the company can get it back in the air only weeks later.

The leaders in the 2025 launch race:

129 SpaceX
58 China
13 Russia
12 Rocket Lab

SpaceX now leads the rest of the world in successful launches, 129 to 98. SpaceX has another launch scheduled for this evening, placing another set of Amazon’s Kuiper satellites into orbit.

Japanese satellite company extends its launch contract with Rocket Lab

The Japanese satellite company Q-shu Pioneers of Space, Inc. (iQPS) has purchased three more launches from Rocket Lab, for a total of seven planned.

The multi-launch contract includes three dedicated Electron missions that will launch no earlier than 2026 from Rocket Lab Launch Complex 1 in New Zealand. With four dedicated missions already booked by iQPS on Electron, these three additional missions bring the total number of upcoming launches for iQPS to seven.

Each dedicated launch will deploy a single synthetic aperture radar (SAR) satellite from a Rocket Lab Motorized Lightband separation system – demonstrating Rocket Lab’s vertical integration across launch and space systems that improves reliability and streamlines the launch process for its customers.

Rocket Lab has already completed four successful launches for iOPS, so with this deal means that it will complete eleven launches total for the satellite company. Essentially iQPS has made Rocket Lab its prime launch provider.

This is also the second major launch contract for Rocket Lab in the past week. On September 30, 2025 Synspective purchased its second multi-launch contract with the company, buying ten more launches. Its first contract was for eleven launches, with six already completed. Synspective hopes to have its entire radar constellation of 30 satellites in orbit by the late 2020s.

Both contracts tell us that Rocket Lab’s Electron rocket is going to have a very busy launch schedule for the next few years, even as the company initiates its larger Neutron rocket.

Is the fate of the independent live streams in Boca Chica uncertain?

My headline paraphrases this interesting, very detailed, and largely accurate article today from Texas Monthly. It outlines how the newly formed town of Starbase there has the power to block the many independent lives streams and tourist operations that have sprung up since SpaceX opened its facility in Boca Chica.

This proxy government also has the power to create zoning rules and enforce them. In July the city adopted a plan that leaves those with the closest views of the launchpads in violation of new zoning designations. The mainstay launch-day ticket sellers here—Rocket Ranch and a few others—operate in what’s now officially a residential area, near newly built homes for SpaceX executives. The same violation applies to the spots where the streamers have mounted their video cameras.

These cottage industries aren’t doomed. Texas law has grandfathering provisions that allow existing businesses to remain open after zoning changes. But Starbase city attorney Andy Messer raised eyebrows during a recent city commission meeting by saying that the grandfathering would be considered on a “case-by-case basis.” Hearing this, some property owners expressed hesitation to approach the city to ask if their status was in question. “I don’t want to poke the bear,” as one put it.

Will SpaceX force the town of Starbase to shut these independent operations down? The article describes the possibilities in great detail. The very nature of SpaceX and its founder, Elon Musk, suggests it won’t happen. The company thrives on openness and straight talk. Musk himself is a proven supporter of free speech and competition. It would be shocking if his company suddenly took a different position. Moreover, SpaceX, Starbase, or its residents (almost all of which are SpaceX employees) generally benefit from the good publicity of these independent operations, publicity that the company’s own employees enjoy.

Yet, Starbase is a company town, and the long history of such places is that with time, the company takes over and rules everything, allowing nothing that it does not control.

Stay tuned. Above all things won’t be dull in Boca Chica.

Hat tip Robert Pratt of Pratt on Texas.

ESA looks to global private sector for its next ISS cargo mission

ESA logo

The European Space Agency (ESA) has issued a request for bids to launch a cargo mission to ISS by the fourth quarter of 2028, and its request will allow companies other than those in Europe to bid.

Published on 3 October, the call for the CSOC Cargo Commercially Procured Offset initiative outlines a single mission to transport 4,900 to 5,000 kilograms of pressurised cargo to the ISS.

… In the call’s “Letter of Invitation”, the agency stated that, due to regulatory requirements that include certifications provided by NASA, the competition would be open to economic operators from the United States. ESA did, however, add that preference would be given, to the “fullest extent possible”, to bids from its Member States.

While the call is set to close on 31 October, the execution of the mission’s procurement will only move forward if the necessary funding is approved by Member States at ESA’s Ministerial Council meeting in November. It will then need to be approved by the relevant Programme Board and the Industrial Policy Committee.

Though there are several European startups (The Exploration Company, Thales Alena, Atmos, PLD) now developing unmanned returnable capsules that will eventually be able to bring cargo to and from ISS, none appear likely to be able to meet the 2028 deadline. Thus, the most likely winner of this contract will be SpaceX.

More significant is the nature of ESA’s request. In the past the agency simply built and owned its own cargo capsule, the ATV. Rather than build another, it is adopting the capitalism model, asking its private sector to make it happen.

Firefly Aerospace buys defense contractor SciTec

Firefly Aerospace yesterday announced that it is buying the defense contractor SciTec for $300 million in cash plus $555 million in Firefly shares.

The shares go to SciTec’s owners at an agreed-to value of $50 per share, essentially making those individuals part owners of Firefly.

The acquisition will advance Firefly’s comprehensive space services by adding mission-proven defense software analytics, remote sensing, and multi-phenomenology data expertise. SciTec’s core capabilities – which include missile warning, tracking and defense, intelligence, surveillance and reconnaissance, space domain awareness, and autonomous command and control – will supplement Firefly’s launch, lunar, and in-space services. SciTec further adds ground and onboard data processing as well as AI-enabled systems designed for low latency operations to support advanced threat tracking and response across multiple domains.

In other words, this acquisition is aimed at improving Firefly’s ability to win defense contracts, thus diversifying its business beyond outer space. This suggests its managers believe there isn’t enough business in outer space to put the company in the black. It needs defense contracts, and adding SciTech increases the odds it will win those contracts.

The stock price in this sale, $50, I think tells us something of the motives of SciTec’s owners. At present Firefly’s stock is selling at about $30 on Wall Street, and the price has not changed much today after this announcement. It appears the stock obtained by SciTec’s owners is thus not as valuable as listed in the intended sale price. This in turn suggests that those owners also needed this deal to diversify the company, and were willing to take a loss in the value of their stock to get it.

Then again, my understanding of how Wall Street and stocks function is limited, and my analysis on this point could be completely wrong.

Space Force awards SpaceX and ULA seven launches worth more than a billion dollars

The U.S. Space Force (USSF) yesterday awarded multi-launch contracts to both SpaceX and ULA for seven launches beginning in 2027 worth more than a billion dollars.

SpaceX received $714 million for five launches and ULA was awarded $428 million for two launches, USSF said in an Oct. 3 news release.

The awards are part of the Space Force’s National Security Space Launch Program, which it uses to launch services for military space missions. In April, it chose SpaceX, ULA, and Blue Origin to launch a total of 54 missions scheduled between fiscal 2027 and 2032, with SpaceX responsible for just over half, with 28 launches. Individual missions will be awarded in batches through fiscal 2029.

Though Blue Origin was included in this program and its New Glenn rocket has finally launched once successfully, its not yet been certified to launch military satellites, and to get certified the company is going to have to launch at least one more time. That launch is expected before this month is out. Moreover, it will soon have to compete against more companies, and the Pentagon will be adding Rocket Lab and Stoke Space to its approved list as soon as both successfully launch their respective Neutron and Nova rockets by next year.

Gilmour to attempt first launch again next year

Eris rocket launch and failure
Eris rocket falling sideways from launchpad
(indicated by red dot). Click for video, cued
to just before launch.

According to a presentation by the CEO and founder of Australian rocket startup Gilmour Space, the company now sufficiently understands what caused the failure on its first launch attempt on July 30 to plan a second attempt in 2026.

The company is still investigating the root cause of the failure. “It looks like what went wrong on the launch is something we’ve never tested close enough to the launch conditions before,” he said, but didn’t elaborate.

One factor in the launch was the long delay between shipping the rocket to the launch site, known as the Bowen Orbital Spaceport, and the launch itself. “Rockets aren’t designed to be at the launch site for 18 months,” he said. The launch site, he noted, is just a kilometer from the ocean, creating salty conditions that can be corrosive.

That extended time at the launch site stemmed from delays securing regulatory approvals for the launch. That included not just a launch license from the Australian Space Agency but also airspace, maritime and environmental permits. “We had to get 24 different permits from the Queensland government,” Gilmour said. “All of these things take a long time to do.” He acknowledged that the company had not put enough resources into those regulatory processes. “The approval processes just took way too long.”

What is ironic is that as bad as Australia appears to be in terms of red tape, it is far better that it mother country, Great Britain. At least in Australia spaceports have been approved and at least one launch has taken place. And it only took eighteen months! In Great Britain the permitting process for its two proposed rocket spaceports has taken almost a decade, and still no vertical launches have occurred at either.

1 2 3 4 295