ULA delays first launch of Vulcan to June at the earliest

Peregrine landing site

An official from Astrobotics confirmed this week that an explosion during testing of the Centaur upper stage of its new Vulcan rocket will delay that rocket’s first launch for at least one to two months, from May to June or July.

On March 29, Tory Bruno, the CEO of Colorado-based spacecraft makers United Launch Alliance LLC, announced on his personal Twitter account that ULA’s Vulcan Centaur V rocket had experienced “an anomaly,” which preceded a tweet he shared on April 13 that showed a video of an explosion that occurred outside of a testing rig that housed the ULA rocket. He alluded to a hydrogen-related leak as being a possible culprit and in response the next day to other replies, Bruno said in a tweet that “June/July” will be the next earliest estimated launch timeline.

That timeline is the same one that John Thornton, CEO of North Side-based Astrobotic, shared during a speech as part of a kickoff event for the Aviation and Robotics Summit in the Strip District on Tuesday.

The main payload on that Vulcan inaugural launch is Astrobotic’s Peregrine lunar lander, carrying several NASA science instruments to the Gruithusien Domes region on the Moon, as indicated by the white dot on the picture above.

Rocket Lab to reuse previously flown engine on upcoming launch

Rocket Lab engineers, having tested a previously flown Rutherford engine numerous times after recovering it from a launch in May 2022, have now approved that engine for reflight, and are inserting into their Electron rocket assembly line for launch sometime in the third quarter of this year.

The company also revealed that it has now completely abandoned the use of a helicopter in first stage recovery, and will instead pick up all first stages after they have splashed down in the ocean.

Extensive analysis of returned stages shows that Electron withstands an ocean splashdown and engineers expect future complete stages to pass qualification and acceptance testing for re-flight with minimal refurbishment. As a result, Rocket Lab is moving forward with marine operations as the primary method of recovering Electron for re-flight. This is expected to take the number of Electron missions suitable for recovery from around 50% to between 60-70% of missions due to fewer weather constraints faced by marine recovery vs mid-air capture, while also reducing costs associated with helicopter operations.

Rocket Lab will assess the opportunities for flying a complete pre-flown first stage booster following the launch of the pre-flown Rutherford engine in the third quarter this year.

Rocket Lab is presently the only operational American company besides SpaceX that is aggressively pursuing reuse of its rocket. ULA says it wishes to recover and reuse the engines of its still-unflown Vulcan rocket, but development of this concept has been very slow. Many other new companies claim their rockets will be reusable, but none has yet even launched.

North Korea claims it is about to launch a spy satellite

According to statements by North Korea’s dictator Kim Jong-un published in its state-run press, that country is only weeks away from launching a spy satellite into orbit.

[S]ome observers said the North may attempt to launch the satellite ahead of President Yoon Suk Yeol’s upcoming state visit to the U.S. later this month. “There is a high possibility that North Korea may attempt a launch around April 23-24, on the basis that weather conditions are favorable, to show off that it has the upper hand on the Korean Peninsula issue by putting it on the table during the South Korea-U.S. summit,” Yang Mu-jin, president of the University of North Korean Studies, said.

Some observers, however, projected that it will take a few more months for the North to put the satellite into orbit given the time needed for technical preparations.

North Korea has completed two previous orbital launches, using its solid-fueled rocket missile technology. It is presently unclear if this new launch will use the same, or fly something new.

Ohio local authorities approves land sale for future private astronaut training facility

The local city council in Brook Park, Ohio, yesterday approved by a vote of 7-0 the purchase of nearly thirteen acres by the British company Blue Abyess to allow it to quickly build its proposed private astronaut training facility.

The Brook Park location will be built around a very large, 150-foot deep, multi-level pool. It’s an area that can replicate what life would be like in outer space and allow for the necessary training, dubbed astronaut boot camp for space exploration. “They’re not swimming pools. They’re aimed at industry, whether that’s marine offshore energy, maritime defense, subsea technology, human performance in extreme environments, or how do humans cope with green space environments,” Vickers said.

Officials say this project could be a huge economic driver, potentially bringing more than 100 jobs to the area.
In addition, it will likely generate major interest from tourists.

The facility will also include a hotel for those private astronauts, whether commercial or tourist. Located next to the Glenn Research Center, the company hopes to provide its services to both the public and NASA.

An ordinary person’s view of the Starship/Superheavy countdown

Starship and Superheavy, stacked on the launchpad for launch

One of my readers, who wishes to go by is nickname Doubting Thomas on Behind the Black, went to Boca Chica earlier this week with the hope of seeing the live first orbital launch of Superheavy with Starship stacked on top. Unfortunately, the launch on April 17, 2023 was scrubbed, and he could not remain in Boca Chica for the now rescheduled launch early tomorrow morning on April 20th.

He sent me some pictures of that experience, however, which I post here with his permission. The best of course is the one to the right, of Starship stacked on Superheavy on the launchpad. This was taken before the roads were closed, and shows how incredibly close the general public can get to that launchpad simply by driving past on a public road.

The next few pictures give us a glimpse at the options people have for viewing future Boca Chica launches.
» Read more

ILC Dover to provide spacesuits and “softgoods” for Sierra Space’s LIFE space station

Sierra Space yesterday announced that it has signed a partnership deal with ILC Dover for it to provide spacesuits and other “softgoods” for Sierra Space’s LIFE space station, including helping to build the station’s inflatable modules.

ILC Dover will be an exclusive partner with Sierra Space for softgoods used to support inflatable space habitat systems for low-Earth orbit (LEO), lunar and Mars transport and surface habitation, and use cases even farther into deep space.

The two companies have already been working together on the development and testing of Sierra Space’s first prototype inflatable modules.

Axiom offers package space program deals for other countries

The private space station and human spaceflight company Axiom announced this week a set of package space program deals it is marketing to other countries.

In the base tier, Axiom provides countries with advice and insight, and gives those countries priority access on upcoming missions. The second tier enables research and development activities by counties. The third tier offers human spaceflight missions on a regular basis. A fourth tier offers countries the ability to co-develop parts of Axiom’s station.

The first country to join the program is Azerbaijan, which will work with Axiom on satellite solutions and inspiring students to pursue space research and development activities. New Zealand and Uzbekistan are also participating, as well as Rakia Mission, an Israeli space education and research organization involved with the Ax-1 private astronaut mission to the ISS a year ago. Italy is another nation working with Axiom through a partnership that dates back to 2018. An Italian astronaut is slated to fly on Axiom’s Ax-3 mission to the ISS, currently scheduled for late 2023. Two astronauts from Saudi Arabia are flying on the Ax-2 mission in May.

The company also notes that it has found its customers divide into three components, government, private citizens, and corporations. At present this is their order in terms of market share, though the company thinks that corporations will eventually become its biggest customer.

SpaceX launches 21 second generation Starlink satellites

SpaceX this morning successfully used its Falcon 9 rocket from Cape Canaveral to launch 21 second generation Starlink satellites into orbit.

The first stage successfully completed its eighth flight, landing on a drone ship in the Atlantic.

The leaders in the 2023 launch race:

25 SpaceX
16 China
6 Russia
3 Rocket Lab

American private enterprise now leads China 28 to 16 in the national rankings, and the entire world combined 28 to 27. SpaceX now trails the entire world, including American companies, 25 to 30.

Rocket Lab introduces a suborbital version of its Electron rocket for hypersonic flight testing

Rocket Lab today announced the availability of a suborbital version of its Electron rocket, dubbed HASTE, designed to do frequent hypersonic flight tests, with its first commercial flight scheduled in the first half of this year.

HASTE is evolved from Rocket Lab’s flagship Electron launch vehicle, which has been providing reliable access to orbit since 2018 and has successfully deployed satellites for NASA (National Aeronautics and Space Administration), the NRO (National Reconnaissance Office), DARPA (Defense Advanced Research Projects Agency) and the U.S. Space Force. HASTE employs the same innovative carbon composite structure and 3D printed Rutherford engines as Electron but has a modified Kick Stage for hypersonic payload deployment, a larger payload capacity of up to 700 kg / 1,540 lbs, and options for tailored fairings to accommodate larger payloads.

It appears that Rocket Lab is attempting to grab market share from Stratolaunch’s Roc/Talon hypersonic testbed, which is gearing up to do its own first hypersonic test flights this year.

Lockheed Martin tests in-orbit cubesat rendezvous

Using two cubesats released separately after launch, Lockheed Martin has successfully tested maneuvering and rendezvous in space.

The two cubesats, each the size of a toaster, were deployed 300 kilometers above geostationary orbit from a ring-shaped secondary payload that carried multiple smallsats. They were released three days apart about 750 kilometers away from each other and a month later they were navigating within 400 meters of each other, Karla Brown, Linuss program manager, told reporters during a news conference at Lockheed Martin’s technology center at the Catalyst Campus.

One of the cubesats performed the role of servicing vehicle and the other was the resident space object. She said she expects the satellites to come even closer, to about 200 meters as the experiment continues. The more significant goal that was accomplished was proving AI algorithms that would be needed to perform a space servicing mission, Brown said.

Maybe the most interesting aspect of this project however is how it is funded. This is old-fashioned R&D (research & development), funded not by the government but by Lockheed Martin as part of a a suite of related in-space servicing projects. Before the arrival of the military-industrial complex post World War II, such work was always paid for in house by the private sector. This commercial R&D was often given great freedom to experiment, in the hope that it would result in new products producing profits.

With the arrival of lots of government money in the 1950s and 1960s, that private R&D money dried up. Big space companies would instead only do the research and development that was funded by the government, either by NASA or the Pentagon. As a result, innovation dried up as well.

The return of private R&D likely means we shall once again see more innovation, since it will once again be done to search out new innovative ways to do things.

Orbit Fab raises $28.5 million in private investment capital

The satellite servicing company Orbit Fab has raised $28.5 million in private investment capital, adding to the $21 million it had already obtained from contracts with the U.S. military.

Orbit Fab’s goal is very specific, to provide refueling services for satellites of all types. To encourage companies to sign on to its service, it markets its own refueling port that satellite companies can add to their satellites.

The company hopes to fly its first of three test refueling missions for the military next year.

Watching the second attempt to launch Starship/Superheavy to orbit

Starship/Superheavy flight plan for first orbital flight
Click for original image.

SpaceX’s second attempt of an inaugural orbital test launch of SpaceX’s massive Superheavy first stage with its orbital Starship spacecraft stacked on top has now been rescheduled for Thursday, April 20, 2023, with a 62-minute launch window opening at 8:28 am Central.

I have embedded SpaceX’s live stream of that launch below, which will begin around 7:15 am (Central). You can also see an independent 24/7 live stream from LabPadre, showing the launchpad from many different angles and available here. NasaSpaceFlight.com also has a 24/7 live stream showing multiple angles here. For both, to see links to their many camera angles click on “more” in the text.

Though both of these independent live streams provide alternative view angles of the launch, both will rely on SpaceX’s main live stream, embedded below, for actual updates on the countdown status.

The flight plan is shown in the graphic above. Assuming all goes as planned, most of the action will occur in the first ten minutes, at which time Starship will cut off its engines and be in orbit. It will then coast for a little over an hour when it will re-enter the atmosphere to splashdown in the Pacific north of the Hawaiian Islands.

As I have noted many times, the historical significance of this rocket cannot be overstated. It is twice as powerful as NASA’s Saturn-5 rocket and almost three-times as powerful as NASA’s new SLS rocket, and went from concept to launch in about seven years. Its development was funded entirely by private investment capital, at a fraction of the cost of either of the government’s rockets. And it will be completely reusable once operational, reducing the cost exponentially of getting large 100-ton payloads into orbit.

And most important, it was developed by free Americans, following their own personal dreams.
» Read more

April 17, 2023 Quick space links

Courtesy of BtB’s stinger Jay.

  • Blue Origin expects to return its New Shepard rocket to flight by the end of 2023
  • In the article a Blue Origin official claims the delay in the investigation is because of the FAA’s involvement, but she also says she isn’t allowed to provide details, a claim that FAA officials immediately deny when asked. While we certainly should expect the involvement of a government agency to slow things down, this person’s duplicity suggests that the blame comes as much from Blue Origin.

 

China launches weather satellite, dumps debris near Taiwan

China's spaceports
China’s spaceports

China today successfully used its Long March 4D rocket to put a weather satellite into orbit, launching from its Jiuquan Satellite Launch Center in northwest China.

A short clip of the launch is available here [Hat tip Jay]. The material falling from the rocket are insulation panels that are intended to fall off in this manner.

Apparently, the flight path took it over Taiwan.

For six hours, air and maritime traffic was disrupted north of Taiwan. The maritime safety administration of Fujian, the Chinese province located opposite Taiwan, warned of a “possible fall of debris from a launcher.”

Taiwan’s Ministry of National Defense said it monitored what it described as a military launch and confirmed having “detected some debris falling into the northern waters of Taiwan.” 33 flights were affected, Taiwan’s Civil Aeronautics Administration said, quoted by Reuters.

The leaders in the 2023 launch race:

24 SpaceX
16 China
6 Russia
3 Rocket Lab

American private enterprise still leads China 27 to 16 in the national rankings, though it is now tied with the rest of the world combined at 27.

Starship/Superheavy launch scrubbed

Because of “a pressurization issue”, SpaceX engineers decided to scrub today’s first test launch of Starship/Superheavy. The launch team then made this launch attempt a wet dress countdown rehearsal, ending at T-40 seconds.

Because of the amount of fuel and oxygen involved, turn-around will take 48 hours, meaning the next launch attempt will likely occur on Wednesday, April 19, 2023, probably at the same approximate time in the morning.

Stay tuned for more details.

Watching the launch of Starship/Superheavy

Starship/Superheavy flight plan for first orbital flight
Click for original image.

UPDATE: Launch scrubbed. To get to new links for watching the live stream in the second launch attempt, now scheduled for April 20, 2023, go here.

Original post:
————-
The first orbital test launch of SpaceX’s massive Superheavy first stage with its orbital Starship spacecraft stacked on top is now scheduled for a launch in a two-and-a-half hour long launch window beginning at 8 am (Central) on Monday, April 17, 2023.

I have embedded SpaceX’s live stream of that launch below, which will begin around 7 am (Central). You can also see an independent 24/7 live stream from LabPadre, showing the launchpad from many different angles and available here. NasaSpaceFlight.com also has a 24/7 live stream showing multiple angles here. Though both of these independent live streams provide alternative view angles of the launch, both will rely on SpaceX’s main live stream, embedded below, for actual updates on the countdown status.

If the launch is scrubbed on April 17th, SpacX has backup dates on April 18th and 19th. The flight plan and time line is shown in the graphic above.

The monumental significance of this rocket cannot be overstated. It is the most powerful rocket ever built, capable of putting more mass into orbit than either the Saturn-5 or NASA’s new SLS rocket.

It took less than seven years from concept to launch. Compare that to SLS, which was proposed in 2004 and only launched last year, two decades later.

It has been been entirely developed with private funds. Though SpaceX does have a NASA contract for building a Starship lunar lander, little of that contract’s funds have yet been distributed to the company. From private funds SpaceX has raised about $10 billion, most of which has been channeled into this rocket’s development, with a small unknown amount used to develop Starlink. Compare that once again to SLS, which has cost about $60 billion to build.

Finally, it is being designed to be completely reusable, thus reducing the cost exponentially for putting large 100-ton payloads into orbit. If successful, Starship/Superheavy will very quickly make the human exploration and colonization of the solar system possible.

And it will do so not as a government project that is part of a government program, but as a private sector product, conceived by individual Americans freely following their dreams, and developed for profit, quickly and efficiently.

Let freedom ring!
» Read more

SpaceX successfully launches 51 payloads using Falcon 9

SpaceX tonight successfully used its Falcon 9 rocket to launch 51 payloads into orbit, including a whole range of microsats, cubesats, and orbital tugs.

The first stage completed its tenth flight, landing at Vandenberg Space Force Base. The fairings completed their second and fifth flights respectively. As of posting the satellites have not yet deployed.

The leaders in the 2023 launch race:

24 SpaceX
15 China
6 Russia
3 Rocket Lab

American private enterprise now leads China 27 to 15, and the entire world combined 27 to 26. SpaceX by itself trails the entire world, including American companies, 24 to 29.

FAA issues Starship launch license; SpaceX schedules launch for April 17th

Starship stacked on top of Superheavy
Starship prototype #24 stacked on top of Superheavy prototype #7

FAA just sent out an email notice announcing that it has issued SpaceX the launch license for the first orbital test launch of Superheavy/Starship.

After completing an evaluation of all applicable Vehicle Operator License requirements, the Federal Aviation Administration (FAA) issued a commercial Vehicle Operator License to SpaceX for launches of the Starship/Super Heavy Launch Vehicle Program in Cameron County, TX.

The affected environment and environmental impacts of Starship/Super Heavy operations at the Boca Chica Launch Site had been analyzed in the 2022 Final Programmatic Environmental Assessment for the SpaceX Starship/Super Heavy Launch Vehicle Program at the SpaceX Boca Chica Launch Site in Cameron County, Texas. Since the 2022 Programmatic Environmental Assessment (PEA), SpaceX provided the FAA with additional information regarding Starship’s planned landing, Super Heavy’s planned soft water landing, and the Launch Pad Detonation Suppression System. In accordance with FAA Order 1050.1F, Environmental Impacts: Policies and Procedures, the FAA prepared the Written Re-evaluation of the 2022 Final Programmatic Environmental Assessment for the SpaceX Starship/Super Heavy Launch Vehicle Program at the Boca Chica Launch Site in Cameron County, Texas to describe and evaluate this additional information.

Based on the Written Re-Evaluation, the FAA concluded that the issuance of a vehicle operator license for Starship/Super Heavy operations conforms to the prior environmental documentation, that the data contained in the 2022 PEA remains substantially valid, that there are no significant environmental changes, and all pertinent conditions and requirements of the prior approval have been met or will be met in the current action. Therefore, preparation of a supplemental or new environmental document is not necessary to support the Proposed Action.

In plain English, the FAA (and other federal agencies) have finally agreed that this launch will do nothing to change the conclusions of the environmental reassessment report that was approved in June 2022. That these agencies decided apparently decided to rehash that approved environmental reassessment for a launch that was also approved in that reassessment suggests that there are individuals in these agencies salivating for an opportunity to squelch SpaceX.

SpaceX has now set April 17, 2023 as the launch date, with its live stream going live in two days. I will embed that live stream late on April 16, 2023, for those who wish to watch it here.

German students about to attempt launch of suborbital hybrid rocket

A student project at the University of Stuttgart in Germany is about to attempt the first suborbital launch of a hybrid rocket that has the possibility of setting a new altitude record for student-built rockets.

The hybrid rocket is 7.80 m long and weighs around 70 kg. It was built by around 60 students from the University Group HyEnD of the University of Stuttgart. “It’s one of the most powerful and advanced student-built hybrid rockets in the world,” says Max Öchsle, HyEnD project manager. With this, the students have big plans: They want to beat their own altitude record of 32 km for student-built hybrid rockets, which they set in 2016.

The students also hope to cross the boundary into space at an altitude of 100 km. In addition to the world record for hybrid rockets, this also makes the world record for student-built rockets in general possible. The previous record is 103.6 km and was set by the University of Southern California (USCRPL) team in 2019. “The world record is within our reach. We could indeed beat it,” says Öchsle. Öchsle is well aware that the record depends on other factors such as the weather.

The launch window begins on April 14th, and extends until April 25th, will take place at the new Esrange commercial spaceport in Sweden, and will be live streamed by the spaceport. Updates on the project can be found at the project’s own website.

What makes this particular student project interesting to me is its location, in Germany. That nation presently has three startup rocket companies racing to be the first to reach orbit. These students are clearly aiming for jobs with this emerging German rocket industry, and if successful at this project will bring to that industry some very sophisticated abilities.

Hakuto-R1 now scheduled to land on Moon on April 25th

Lunar map showing Hakuto-R1's landing spot
Hakuto-R1’s planned landing site is in Atlas Crater.

The private company Ispace yesterday announced that their Hakuto-R1 lunar lander, presently in orbit around the Moon, will attempt a landing on April 25, 2023, landing in Atlas Crater.

At approximately 15:40 on April 25, 2023, (UTC), the lander is scheduled to begin the landing sequence from the 100 km altitude orbit. During the sequence, the lander will perform a braking burn, firing its main propulsion system to decelerate from orbit. Utilizing a series of pre-set commands, the lander will adjust its attitude and reduce velocity in order to make a soft landing on the lunar surface. The process will take approximately one hour.

Should conditions change, there are three alternative landing sites and depending on the site, the landing date may change. Alternative landing dates, depending on the operational status, are April 26, May 1, and May 3, 2023.

The lander carries several commercial payloads, including the United Arab Emirates (UAE) Rashid rover. Ispace says the landing will be publicly live streamed, with more details to follow.

The company has from the beginning been treating this entire mission as an engineering test, with ten major goals, all related to proving out the lander’s systems. It has now completed eight of those goals, with a successful landing and successful operations on the surface the last challenges. If Hakuto-R1 succeeds, Ispace will become the first private company to complete a privately funded planetary mission to the Moon.

Furthermore, the company is already planning its second lunar landing mission, Hakuto-R2 in 2024, and a third more ambitious lunar mission for NASA, partnering with the American company Draper.

Does India’s new space policy shift operations from the government to the private sector?

On April 6, 2023 the Modi government of India announced that it had approved a new space policy, describing it as designed to boost private commercial space over the government-run operations of its space agency ISRO.

At the time, and still to this day, the actual text of that policy has not been released. However, an article today from India provides some analysis of this policy, based on statements by several government officials, and suggests that the goal of that policy is the same as NASA’s has been for the past decade, shift from being the builder of spacecraft and rockets to simply being the customer buying those products from the private sector. The key statement illustrating this came from Dr. S. Somnath, chairman of ISRO.

Speaking to the media, Somnath said that the new policy is focused on strengthening the participation of private players in India’s space program. The ISRO chairman also said that the new policy outlines a framework under which the private sector can use ISRO facilities for a small fee. The policy also looks upon private players to create new infrastructure in the space sector.

In what can be seen as a critical move, Somnath told the media that “ISRO will not do any operational and production work for the space sector and focus its energies on developing new technologies, new systems and research and development.” This essentially means that the routine production and launches that the ISRO was so caught up with until now will be handled by the private sector completely.

In other words, ISRO’s effort to capture market share by launching its rockets (dubbed GSLV, PSLV, and SSLV) for profit will eventually end. The Modi government instead wants the private sector to do this work, with rockets it builds and owns.

Even if we assume this analysis is correct, replacing ISRO’s rocket with private rockets however cannot happen quickly. While India has a vibrant commercial space industry, it presently only has two startup rocket companies, Agnikul and Skyroot, neither of which is close to reaching orbit. For NASA, the transition from running and owning everything to being a customer took about a decade. Expect the same transition in India to take as long, assuming the Modi government stays firm against the resistance that will surely come from its government bureaucracy, and any later administrations hold to this policy as well.

Furthermore, that the policy text has not been made public strongly suggests that the Modi government recognizes that it will face strong opposition within India’s very large and powerful bureaucracy, which is far larger and stronger than even the U.S.’s administrative state in DC. Fighting that bureaucracy in India is going to be very difficult, if not impossible.

Relativity ends Terran-1, will move to developing more powerful Terran-R

According to Tim Ellis, the head of the rocket company Relativity, it has decided to end any further work on its small test rocket, Terran-1 following its first failed launch and shift all work to developing its more powerful Terran-R rocket.

The company feels good about the data collected from the flight, as Terran 1 made it further into space than the debut launches from a majority of small rocket companies. It also validated the company’s test and launch program, he said, and its approach to 3D printing large parts of a rocket. “Terran 1 was always meant to develop technologies that were pushing the bounds for what was needed for Terran R,” Ellis said.

But now, it’s time to move on. Relativity Space is negotiating with NASA to move the one existing commercial launch on Terran 1—the Venture Class Launch Services Demonstration 2 mission—onto another rocket, possibly the Terran R. In other words, there will be no more Terran 1 launches.

Ellis also described some major changes in the design of Terran-R. The company will no longer attempt to make the second stage reusable, it will no longer 3D-print its entire structure, its first stage will be more powerful and will be flown and reusable like SpaceX’s Falcon 9, and its first launch will be pushed back from 2024 to 2026.

This decision means that Relativity will not become an operational and competitive rocket company for another three years, at the soonest. However, should it succeed in achieving these new plans for Terran-R, it will have a rocket that can directly compete with SpaceX, while beating out anything either ULA or Blue Origin can at this time offer. For example, the rocket will be able to put from 23 to 33 tons into low Earth orbit, which is more than the Falcon 9 (20 tons) and not much less than the Falcon Heavy (50 tons), and generally better than Vulcan (27 tons). As noted at the link:

[T]he US government (as well as commercial satellite customers) would very much like a second company to step forward and challenge SpaceX on innovation, price, and reliability. Ellis correctly sees that this lane remains open with questions about Vulcan’s long-term future, Blue Origin’s slow movement on New Glenn, and Rocket Lab’s focus on a smaller medium-lift rocket, Neutron.

Whether this new strategy will work depends entirely on whether Relativity can deliver by 2026. If it does so, it will very likely beat Blue Origin into orbit, and be chosen by the military to replace it as one of the Pentagon’s launch providers. It will also make ULA’s position more vulnerable, because Vulcan will no longer be the only other option, and it will likely not be able to compete with the prices offered by SpaceX and Relativity.

SpaceX announces it will be providing a webcast for Starship’s first orbital flight

Starship/Superheavy flight plan for first orbital flight
Click for original image.

SpaceX today revealed the details for its live stream of the first orbital launch of Superheavy/Starship, now targeting a launch date around April 21, 2023, depending on when the FAA issues the launch license.

A live webcast of the flight test will begin ~45 minutes before liftoff. As is the case with all developmental testing, this schedule is dynamic and likely to change, so be sure to stay tuned to our social media channels for updates.

I will embed that live stream here on Behind the Black. Stay tuned for more information.

The flight plan is shown above. The website also provides a detailed timeline. If launch manages to pass through Max-Q and get to stage separation, Superheavy will do a flip to do a soft targeted landing in the Gulf of Mexico. Starship will continue into orbit, and then fire its engines to return to Earth to do a soft targeted landing in the Pacific northeast of the Big Island of Hawaii.

That is the plan. Much can go wrong along the way, considering Superheavy has never flown once, no less with Starship stacked on top. Furthermore, Starship has never flown in its present iteration. Previous suborbital tests were using much earlier prototypes vastly different that this prototype, #24 in the series.

Regardless whether all goes perfectly or some things fail, the launch will be a success because it will provide SpaceX data for future test flights, which are waiting in the wings.

Startup aims to provide Space Force a satellite that can study the satellites of other countries

True Anomaly, a Colorado-based startup, has proposed building satellites for the Space Force designed to maneuver close to other satellites and provide high resolution imagery and data about them.

The company has already raised $30 million, and used it to hire 57 employees and a facility for manufacturing these satellites.

The startup plans to use the funding to scale the production of its Jackal Autonomous Orbital Vehicle, which was designed to study space objects at close range. The spacecraft collects photos, videos and data about any space objects in orbit, and it’s operated by humans with the assistance of artificial intelligence pilots.

Both China and Russia have flown a handful of satellites testing this exact technology. The U.S. has not, at least nothing comparable in recent years.

The real story here however is the manner in which the Space Force will do this. Instead of designing and building the satellites itself, which has been the policy of the military for decades, the Space Force is following the recommendations in my 2017 policy paper, Capitalism in Space, and becoming merely a customer, letting private companies do the work and own it themselves.

Startup proposes capturing space junk with a satellite operating like a whale

Paladin satellite capturing space junk

Paladin, a new space junk removal startup based in Australia, has now proposed building a satellite that would literally swallow space junk and then send it over the ocean to burn up.

The image to the right shows the satellite as a piece of junk is about to be captured. The advantage it has on all other designs for capturing space junk is its simplicity. No nets, no harpoons, no grappling arms. The debris is captured inside a box inside the satellite, and then that box is released to burn up. This quote from the startup’s founder and CEO, Harrison Box, illustrates well his investment argument:

“The European Space Agency is currently paying 100 million euros to remove just one item of space junk. That’s the value they put on the job,” says Box. “Imagine the value of being able to remove hundreds.”

Paladin is one of 29 startups that have divided up $14 million in development money provided by a program of the Australian government. Thus, it is only at the very beginning of development, without a lot of cash to work with.

The idea however is smart, with great potential.

Report recommends Congress allow full regulation of commercial human spaceflight

The modern instruction manual for America
The modern instruction manual for America

A new report by the RAND corporation has recommended that Congress allow the moratorium on full regulation of commercial human spaceflight, established by the Commercial Space Launch Amendments Act of 2004 and extended several times, to expire on October 1, 2023.

That recommendation came despite a lack of progress on voluntary standards and key industry metrics. While standards development organizations like ASTM International and ISO have published 20 standards related to commercial spaceflight, the RAND report noted that “companies have yet to clearly or consistently adopt them in a manner that can be confirmed or verified publicly.” A diversity of technical approaches also hinders the development and implementation of standards.

The report also found that while the FAA had developed key industry indicators to assess readiness for adopting safety regulations, there were no goals for those indicators to determine when it was time to implement regulations. “It is, therefore, difficult to assess whether there has been progress toward meeting key industry metrics when there are not clear targets that could be met,” the report concluded.

Despite that lack of progress on standards or metrics, the RAND report nonetheless concluded that allowing the learning period to expire this year was the best approach. Doing so, it argued, would allow FAA and industry to start the process of developing safety regulations in a gradual manner and avoid a rush to regulate imposed by Congress should a high-profile accident take place while the learning period is still in effect.

It also recommended additional resources for the FAA to support that regulatory process, but did not quantify an increase in the budget for or personnel assigned to its Office of Commercial Space Transportation, or AST. [emphasis mine]

The highlighted words illustrate the crushing fundamentals of all government regulation. » Read more

Japanese businesses face major losses due to Virgin Orbit bankruptcy

Two Japanese companies (one partnering with a Japanese airport) now face major financial losses due to the bankruptcy of Virgin Orbit.

Two Japanese companies, ANA Holdings … and little-known Japanese satellite development start-up iQPS Inc emerged among the top six creditors when Virgin Orbit filed for Chapter 11 bankruptcy protection on Tuesday.

ANA, owed $1.65 million, had been a key partner for the Oita spaceport, entering a provisional deal with Virgin Orbit in 2021 for 20 flights of its LauncherOne rocket there. ANA said it was hopeful Virgin Orbit, which has said it is seeking a buyer, would be able to restructure and resume business.

Fukuoka-based iQPS had paid a $5.2 million deposit to launch its small, lightweight constellation satellites weighing under 100 kilograms (220 pounds), representing a major portion of the $17.2 million Series A funding it had raised in 2017.

ANA and the government of Oita prefecture had also hoped to garner some economic benefits from tourism by making this deal with Virgin Orbit. That won’t be happening now, though the expectation by this Japanese local government was never realistic. In fact, it illustrates how divorced government officials are from economic reality. No airport spaceport is going to attract a lot of tourism, even if Virgin Orbit was prospering and launching monthly.

Starship now stacked on launchpad

Starship stacked on top of Superheavy

In preparation for a final wet dress rehearsal countdown followed by its first launch, Starship has now been stacked on top of Superheavy at SpaceX’s launchpad at Boca Chica, Texas.

The picture to the right is a screen capture from a short video Elon Musk posted on Twitter. SpaceX had also tweeted that its “Team is working towards a launch rehearsal next week [April 10-11] followed by Starship’s first integrated flight test ~week later pending regulatory approval.”

At this time the FAA has still not issued the launch license. By announcing its plan to launch the week of April 17th, Musk and SpaceX puts pressure the government bureaucracy to get a move on.

Axiom sets date for next commercial manned flight to ISS

Axiom and NASA yesterday announced May 8, 2023 as the launch date for the private company’s second commercial flight to ISS, this time carrying three passengers out of a crew of four, two from Saudi Arabia and the third, John Shoffner, completing his second paid flight with Axiom.

Two of its crewmates are Rayyanah Barnawi and Ali AlQarni, members of the first Saudi Arabian astronaut class. Barnawi will become the first Saudi woman ever to reach space, and she and AlQarni will be the first people from the kingdom to travel to the ISS.

Retired NASA astronaut Peggy Whitson will command the mission for Axiom. The Dragon capsule used will be Freedom, making its second flight, lifting off on a Falcon 9 rocket with a new first stage. The plan is to be docked to ISS for ten days, which means for that time period ISS will have three Arab astronauts on board, including the UAE’s astronaut, Sultan Al Neyadi, who is in the middle of a six month mission and is about to do his first spacewalk.

Chinese pseudo-company succeeds in reaching orbit again after three straight failures

China's spaceports
China’s spaceports

The Chinese pseudo-company I-space has finally reached orbit again with a launch today of its Hyperbola-1 (SQX-1) solid-fueled rocket, lifting off from China’s Jiuquan inland spaceport in the Gobi Desert.

After an initial launch success in 2019, the company had failed three straight times until today. No word on whether the first stage landed near habitable areas in China. Nor did the pseudo-company reveal whether the rocket carried an actual satellite into orbit.

Jiuquan is presently the only spaceport where China permits these pseudo-companies to launch, and has been expanding its facilities for these commercial operations. This also means China will be experiencing more first stages dropping on their heads of its people, which is why it is also building a commercial launchpad at the Wenchang spaceport on the coast.

The leaders in the 2023 launch race:

23 SpaceX
15 China
6 Russia
3 Rocket Lab

American private enterprise now leads China 26 to 15 in the national rankings, and the entire world combined 26 to 25. SpaceX now trails the rest of the world combined, including American companies, 23 to 28.

UPDATE from BtB’s stringer Jay: Video of the launch can be found here. Jay also notes the lack of any mention of I-space in the official Chinese press, announcing this launch. Adds weight to the conclusion that these companies are not really real, but simply divisions of the Chinese government.

1 48 49 50 51 52 271