The two candidate landing sites for ExoMars2020

The June release of new images from Mars Reconnaissance Orbiter (MRO) included three images of the two candidate landing sites for Europe’s 2020 ExoMars rover mission. All three images provide us as hint at what that rover might see when it arrives a few years from now.

ExoMars 2020 landing sites

The two candidate sites are locations on Mars dubbed Mawrth Vallis and Oxia Palas. The map to the right shows their general location to the east of Mars’s giant volcanoes and giant canyon Valles Marineris. The red splotches indicate the large number of images taken by MRO of these locations, partly to help the ExoMars science team choose which site to pick and partly to study the geology in these Martian locations. As you can see, both candidate sites are in the transition zone between the northern low plains and the southern highlands.

At first glance Mawrth Vallis seems the more spectacular site. Mawrth (Welsh for Mars) is one of the gigantic drainage canyons near Valles Marineris. Though tiny in comparison to Valles Marineris, on Earth it would easily rival the Grand Canyon in size, and in fact is slightly longer (400 miles versus 300 miles). Unlike the Grand Canyon, however, Mawrth Vallis doesn’t appear to have a distinct or obvious rim. This video, produced by the European Space Agency using images from its Mars Express orbiter, gives a sense of the canyon’s terrain as it flies upstream from the northern lowlands to the canyon’s high point in the southern highlands. The highlands on either side of the canyon more resemble the broken geology of Mars’s chaos regions that are found scattered about in this transition zone than the flat generally level Kaibab plateau that surrounds the Grand Canyon.

Mawrth Vallis

The image on the right is a tiny crop from the most recently released MRO image. The full image shows a strip of the upper plateau south of canyon and near its inlet from the southern highlands. This crop reveals a surface that is a wild mixture of colors and complex geology. In fact, in a 2017 MRO image release showing a different place in Mawrth Vallis, the canyon was dubbed a “painted desert.” To quote that release:

The clay-rich terrain surrounding Mawrth Vallis is one of the most scenic regions of Mars, a future interplanetary park. …The origin of these altered layers is the subject of continued debates, perhaps to be resolved by a future rover on the surface. We do know that these layers are very ancient, dating back to a time when the environment of Mars was wetter and more habitable, if there were any inhabitants.

Other MRO images of Mawrth Vallis here and here emphasize this description.

As for Oxia Palas, the other candidate landing site for ExoMars 2020, in the June MRO image release there were two images.
» Read more

Growing Martian dust storm forces Opportunity to suspend operations

A growing Martian dust storm has forced the Opportunity science team to suspend science operations and to reconfigure the rover’s operations to increase its chances of surviving the storm.

In a matter of days, the storm had ballooned. It now spans more than 7 million square miles (18 million square kilometers) — an area greater than North America — and includes Opportunity’s current location at Perseverance Valley. More importantly, the swirling dust has raised the atmospheric opacity, or “tau,” in the valley in the past few days. This is comparable to an extremely smoggy day that blots out sunlight. The rover uses solar panels to provide power and to recharge its batteries.

Opportunity’s power levels had dropped significantly by Wednesday, June 6, requiring the rover to shift to minimal operations.

This isn’t Opportunity’s first time hunkering down in bad weather: in 2007, a much larger storm covered the planet. That led to two weeks of minimal operations, including several days with no contact from the rover to save power. The project’s management prepared for the possibility that Opportunity couldn’t balance low levels of power with its energy-intensive survival heaters, which protect its batteries from Mars’ extreme cold. It’s not unlike running a car in the winter so that the cold doesn’t sap its battery charge.There is a risk to the rover if the storm persists for too long and Opportunity gets too cold while waiting for the skies to clear.

In other words, there is a possibility that the rover might not make it through this period of low sunlight. Nonetheless, the rover did send four images down yesterday, though the four images are essentially dust filled, and are likely aimed at the far distance to help gauge the extent of the storm.

Curiosity finds methane fluctuates seasonally in Gale Crater

Seasonal methane on Mars

In its second significant science release yesterday (the first relating to the discovery of organics), the Curiosity science team revealed that they have found over almost three Martian years the amount of methane in the atmosphere appears to fluctuate seasonally. The graph on the right illustrates this change.

[The data] show methane rises from just above 0.2ppb in the northern hemisphere winter to a fraction over 0.6ppb in the summer. The team’s best explanation is that methane is seeping up from underground, perhaps from stored ices, and is then being released when surface soils are warmed.

The team cannot positively identify the origin of the methane, but the researchers think they can close down one particular mechanism for its production. This involves sunlight breaking up carbon-rich (organic) molecules that have fallen to the planet’s surface in meteorites.

The variation in ultraviolet light over the course of the seasons is not big enough to drive the scale of the change seen in the methane concentration, says Dr Webster. “We know the intensity of the Sun and this mechanism should produce only a 20% increase in methane during the summer, but we’re seeing it increase by a factor of three,” he explained.

The change could be caused by either a chemical or a biological process. At this time there is no way to determine which.

Curiosity finds evidence of complex carbon molecules

In a study released today, the Curiosity science team announced that earlier drill samples revealed evidence of complex organic carbon molecules, the possible remains of past life.

To unlock organic molecules from the samples, the oven baked them to temperatures of between 600°C and 860°C—the range where a known contaminant disappeared—and fed the resulting fumes to a mass spectrometer, which can identify molecules by weight. The team picked up a welter of closely related organic signals reflecting dozens or hundreds of types of small carbon molecules, probably short rings and strands called aromatics and aliphatics, respectively. Only a few of the organic molecules, sulfur-bearing carbon rings called thiophenes, were abundant enough to be detected directly, Eigenbrode says.

The mass patterns looked like those generated on Earth by kerogen, a goopy fossil fuel building block that is found in rocks such as oil shale—a result the team tested by baking and breaking organic molecules in identical instruments on Earth, at Goddard. Kerogen is sometimes found with sulfur, which helps preserve it across billions of years; the Curiosity scientists think the sulfur compounds in their samples also explain the longevity of the Mars compounds.

Earth’s kerogen was formed when geologic forces compressed the ancient remains of algae and similar critters. It’s impossible to say whether ancient life explains the martian organics, however. Carbon-rich meteorites contain kerogenlike compounds, and constantly rain down on Mars. Or reactions driven by Mars’s ancient volcanoes could have formed the compounds from primordial carbon dioxide. Monica Grady, a planetary scientist at The Open University in Milton Keynes, U.K., believes the compounds somehow formed on Mars because she thinks it’s highly unlikely that the rover dug into a site where an ancient meteorite fell. She also notes that the signal was found at the base of an ancient lake, a potential catchment for life’s remains. “I suspect it’s geological. I hope it’s biological,” she says.

It must be emphasized once again that they have not found evidence of past life. What they have found are the types of molecules that are often left behind by life, but can also form without the presence of life.

This result, from past drillholes in the Murray Formation, explains however why Curiosity headed back downhill to do its most recent drill test.

Curiosity has one last tool to help the team find out: nine small cups containing a solvent that frees organic compounds bonded in rock, eliminating the need to break them apart—and potentially destroy them—at high temperatures. In December 2016, rover scientists were finally prepared to use one of the cups, but just then the mechanism to extend the rover’s drill stopped working reliably. The rover began exploring an iron-rich ridge, leaving the mudstone behind. In April, after engineers found a way to fix the drill problem, the team made the rare call to go backward, driving back down the ridge to the mudstone to drill its first sample in a year and half. If the oven and mass spectrometer reveal signs of organics in the sample, the team is likely to use a cup. “It’s getting so close I can taste it,” says Ashwin Vasavada, Curiosity’s project scientist at the Jet Propulsion Laboratory in Pasadena, California.

The newest drillhole sample has now entered the mass spectrometer. Stay tuned!

Another intriguing pit on Mars

pit on Mars

Cool image time! In the June release of images from the high resolution camera on Mars Reconnaissance Orbiter, I came across the image on the right, cropped slightly to post here, of a pit in a region dubbed Hephaestus Fossae that is located just at the margin of Mars’s vast northern plains.

Below and to the right is an annotated second image showing the area around this pit. If you click on it you can see the full resolution image, uncropped, and unannotated.

wider view of pit

The scale bar is based on the 25 centimeter per pixel scale provided at the image link. Based on this, this pit is only about ten to fifteen meters across, or 30 to 50 feet wide. The image webpage says the sun was 39 degrees above the horizon, with what they call a sun angle of 51 degrees. Based on these angles, the shadow on the floor of the pit suggests it is about the same depth, 30 to 50 feet.

The shadows suggest overhung walls. This, plus the presence of nearby aligned sinks, strongly suggests that there are extensive underground passages leading away from this pit.

For a caver on Earth to drop into a pit 30 to 50 feet deep is nowadays a trivial thing. You rig a rope (properly), put on your vertical system, and rappel in. When you want to leave you use that same vertical system to climb the rope, using mechanical cams that slide up the rope but will not slide down.

On Mars such a climb would be both easier and harder. The gravity is only one third that of Earth, but the lack of atmosphere means you must wear some form of spacesuit. Moreover, this system is not great for getting large amounts of gear up and down. Usually, people only bring what they can carry in a pack. To use this Martian pit as a habitat will require easier access, preferable by a wheeled vehicle that can drive in.

The pit’s location however is intriguing. The map below shows its location on a global map of Mars. This region is part of the Utopia Basin, the place with the second lowest elevation on Mars.
» Read more

Curiosity’s new drilling technique declared a success

In order to bypass a failed feed mechanism in the rover’s drill, Curiosity’s engineering team has declared successful the new techniques they have developed for drilling and getting samples.

They had successfully completed a new drill hole two weeks ago, but are only now are satisfied that the new method for depositing samples in the laboratories will work.

This delivery method had already been successfully tested at JPL. But that’s here on Earth; on Mars, the thin, dry atmosphere provides very different conditions for powder falling out of the drill. “On Mars we have to try and estimate visually whether this is working, just by looking at images of how much powder falls out,” said John Michael Moorokian of JPL, the engineer who led development of the new sample delivery method. “We’re talking about as little as half a baby aspirin worth of sample.”

Too little powder, and the laboratories can’t provide accurate analyses. Too much, and it could overfill the instruments, clogging parts or contaminating future measurements. A successful test of the delivery method on May 22 led to even further improvements in the delivery technique.

Part of the challenge is that Curiosity’s drill is now permanently extended. That new configuration no longer gives it access to a special device that sieves and portions drilled samples in precise amounts. That device, called the Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA), played an important role in delivering measured portions of sample to the laboratories inside the rover.

I suspect that they still need to do more tests, and that the new method of shaking off material from the drill itself will not always work. At the same time, it reopens the option of using the drill and getting samples from it, which is a very good thing.

Cubesats heading to Mars complete first course correction

The two cubesats, MarCO-A and MarCO-B, that were launched with NASA’s InSight Mars lander, have both completed their first course corrections, the first ever done in interplanetary space by cubesats.

While MarCO-A corrected its course to Mars relatively smoothly, MarCO-B faced some unexpected challenges. Its maneuver was smaller due to a leaky thruster valve that engineers have been monitoring for the past several weeks. The leak creates small trajectory changes on its own. Engineers have factored in these nudges so that MarCO-B can still perform a trajectory correction maneuver. It will take several more weeks of tracking to refine these nudges so that MarCO-B can follow InSight on its cruise through space.

“We’re cautiously optimistic that MarCO-B can follow MarCO-A,” said Joel Krajewski of JPL, MarCO’s project manager. “But we wanted to take more time to understand the underlying issues before attempting the next course-correction maneuver.”

Once the MarCO team has analyzed data, they’ll know the size of follow-on maneuvers. Several more course corrections will be needed to reach the Red Planet.

Since these two cubesats are an engineering test, even MarCo-B’s fuel leak issue provides valuable information that will make future interplanetary missions more likely and viable.

New impact craters on Mars

New impact crater on Mars

Cool image time! The high resolution camera on Mars Reconnaissance Orbiter (MRO) keeps finding recent impact craters, all of which the science team try to monitor periodically to see how the surface evolves over time. The image on the right, cropped to post here, is one such crater, the image taken in January 2018 and released with as one of the captioned images from this month’s image catalog release. If you click on the image you can see the full picture.

What is notable about this particular impact are the colors.

The new crater and its ejecta have distinctive color patterns. Once the colors have faded in a few decades, this new crater will still be distinctive compared to the secondaries by having a deeper cavity compared to its diameter.

Those colors of course have importance to researchers, as they reveal the different materials found beneath the surface at this location, normally hidden by surface dust and debris.

Nor is this the only impact crater revealed in this month’s image release. Earlier in the month the science team highlighted an image that captured two small impacts. While all three of these impacts are in the general region called Elysium Planitia, they are not particularly close to each other. They are however surrounding the landing site for the InSight lander now heading to Mars. This last link takes you to my January 28, 2018 post detailing some information about this landing site, and also includes another recent crater impact, found at the center of the landing zone.

It is not clear if these recent impacts are related to each other. As noted by Alfred McEwen of the science team, “Often, a bolide breaks apart in the atmosphere and makes a tight cluster of new craters.” It could be that all these recent impacts came from the same bolide, which is why there appear to be a surplus of them in Elysium Planitia.

Then again, our surface survey of Mars is very incomplete. These impacts could simply be marking the normal impact rate for Mars. We will not know until we have completed a detail survey of all recent impacts on Mars, and have been able to date them all.

Who wants to do it?

Mars rover update: May 23, 2018

Summary: Curiosity drives down off of Vera Rubin Ridge to do drilling in lower Murray Formation geology unit, while Opportunity continues to puzzle over the formation process that created Perseverance Valley in the rim of Endeavour Crater.

For a list of past updates beginning in July 2016, see my February 8, 2018 update.

Curiosity

Curiosity's travels on and off Vera Rubin Ridge

For the overall context of Curiosity’s travels, see Pinpointing Curiosity’s location in Gale Crater.

Since my April 27, 2018 update, Curiosity has continued its downward trek off of Vera Rubin Ridge back in the direction from which it came. The annotated traverse map to the right, cropped and taken from the rover’s most recent full traverse map, shows the rover’s recent circuitous route with the yellow dotted line. The red dotted line shows the originally planned route off of Vera Rubin Ridge, which they have presently bypassed.

It appears they have had several reasons for returning to the Murray Formation below the Hematite Unit on Vera Rubin Ridge. First, it appears they wanted to get more data about the geological layers just below the Hematite Unit, including the layer immediately below, dubbed the Blunts Point member.

While this is certainly their main goal, I also suspect that they wanted to find a good and relatively easy drilling candidate to test their new drill technique. The last two times they tested this new technique, which bypasses the drill’s stuck feed mechanism by having the robot arm itself push the drill bit against the rock, the drilling did not succeed. It appeared the force applied by the robot arm to push the drill into the rock was not sufficient. The rock was too hard.

In these first attempts, however, they only used the drill’s rotation to drill, thus reducing the stress on the robot arm. The rotation however was insufficient. Thus, they decided with the next drill attempt to add the drill’s “percussion” capability, where it would not only rotate but also repeatedly pound up and down, the way a standard hammer drill works on Earth.

I suspect that they are proceeding carefully with this because this new technique places stress the operation of the robot arm, something they absolutely do not want to lose. By leaving Vera Rubin Ridge they return to the more delicate and softer materials already explored in the Murray Formation. This is very clear in the photo below, cropped from the original to post here, showing the boulder they have chosen to drill into, dubbed “Duluth,” with the successful drill hole to the right.
» Read more

Drilling success for Curiosity

For the first time in more than a year, Curiosity has successfully used its drill to obtain a sample from beneath the surface of Mars.

Curiosity tested percussive drilling this past weekend, penetrating about 2 inches (50 millimeters) into a target called “Duluth.”

NASA’s Jet Propulsion Laboratory in Pasadena, California, has been testing this drilling technique since a mechanical problem took Curiosity’s drill offline in December of 2016. This technique, called Feed Extended Drilling, keeps the drill’s bit extended out past two stabilizer posts that were originally used to steady the drill against Martian rocks. It lets Curiosity drill using the force of its robotic arm, a little more like the way a human would drill into a wall at home.

I plan to post a rover update either today or tomorrow, with more details about this success. Stay tuned!

Mars cubesats take picture of Earth and Moon

One of the two MarCO cubesats heading to Mars on the first interplanetary cubesat mission, has taken its a picture of the Earth and the Moon.

NASA set a new distance record for CubeSats on May 8 when a pair of CubeSats called Mars Cube One (MarCO) reached 621,371 miles (1 million kilometers) from Earth. One of the CubeSats, called MarCO-B (and affectionately known as “Wall-E” to the MarCO team) used a fisheye camera to snap its first photo on May 9. That photo is part of the process used by the engineering team to confirm the spacecraft’s high-gain antenna has properly unfolded.

As a bonus, it captured Earth and its moon as tiny specks floating in space.

In a few weeks the two cubesats will make a mid-course correction, also the first time a cubesat has attempted such a thing.

Chaos on Mars

chaos terrain

Cool image time! The image on the right, cropped and reduced in resolution to post here, shows an area on Mars that geologists have dubbed “Chaos Terrain.” If you click on the image you can see the full image, which also includes several canyons oriented in what seem to be random directions.

I first heard this geological term for regions on Mars shortly after the first orbital missions circling Mars began taking images back in the 1970s. It applied to places where the terrain was hummocky, a crazy collection of hills forming no pattern at all. Earth does not really have such terrain.

The close-up to the right also shows that at least one of these hills is fractured, made up of several large pieces that have separated over time.

This image was part of the May 2nd image release from the high resolution camera on Mars Reconnaissance Orbiter. What makes it interesting is its location on Mars. The image below shows that location, indicated by a white cross.
» Read more

NASA will fly a test drone on 2020 Mars rover mission

NASA today announced that a test drone, dubbed Mars Helicopter, will be flown on the 2020 Mars rover mission.

Once the rover is on the planet’s surface, a suitable location will be found to deploy the helicopter down from the vehicle and place it onto the ground. The rover then will be driven away from the helicopter to a safe distance from which it will relay commands. After its batteries are charged and a myriad of tests are performed, controllers on Earth will command the Mars Helicopter to take its first autonomous flight into history.

“We don’t have a pilot and Earth will be several light minutes away, so there is no way to joystick this mission in real time,” said Aung. “Instead, we have an autonomous capability that will be able to receive and interpret commands from the ground, and then fly the mission on its own.”

The full 30-day flight test campaign will include up to five flights of incrementally farther flight distances, up to a few hundred meters, and longer durations as long as 90 seconds, over a period. On its first flight, the helicopter will make a short vertical climb to 10 feet (3 meters), where it will hover for about 30 seconds.

As a technology demonstration, the Mars Helicopter is considered a high-risk, high-reward project. If it does not work, the Mars 2020 mission will not be impacted. If it does work, helicopters may have a real future as low-flying scouts and aerial vehicles to access locations not reachable by ground travel.

The only word I can think of to express my thoughts on this is “Cool!”

Mars Odyssey looks down at Curiosity

Gale Crater

The Mars Odyssey team today released an image the spacecraft took of Gale Crater on January 16, 2018. This image, reduced in resolution, is posted on the right and captures the entire region that the rover Curiosity has been traversing for the past six years. If you click on the image you can view the full resolution original.

I have placed Curiosity’s full route since its landing on this image so that we can see where the rover has been. The actual peak of Mount Sharp is a considerable distance to the south and is not visible in this image. (For the full context of the crater and Curiosity’s travels see my March 2016 post, Pinpointing Curiosity’s location in Gale Crater)

The river-like flow feature cutting through the north rim is called Peace Vallis. Scientists think this was formed by water flowing into the crater when the climate of Mars was wetter and there was a lake inside the crater floor.

You can get another perspective of this same view by looking at the panorama looking north that Curiosity took once it climbed up onto Vera Rubin Ridge.

I have said this before, but this Mars Odyssey image once again illustrates how little of Mars we have so far seen. Curiosity has barely begun its climb into the foothills of Mount Sharp. The mile-high mountains that form the rim of Gale Crater are far away, and will not be walked for probably generations. I do not expect any space probe or explorer to enter Peace Vallis for at least a hundred years, since there are so many other places on Mars to visit and Gale Crater has already gotten its first reconnaissance by Curiosity.

The image also gives as a view of Curiosity’s future travels. Based on this October 3, 2016 press release, Curiosity will eventually head into the mouth of the large canyon directly to the south of its present position. Whether the mission will continue up this canyon wash, using it as the route up Mount Sharp, will depend on many things, including the roughness of the terrain in that canyon and the simple question of whether the rover will be able to operate that long.

If it does, the views then from inside that canyon should be quite breathtaking.

Craters, cones, pits, amid endless plains

Pits, cones, and craters

Cool image time! Buried in the catalog of recent high resolution images from Mars Reconnaissance Orbiter are places on Mars that are inexplicable and fascinating, while also indicative of its vastness. The image on the right, reduced in resolution and cropped to post here, shows us one such place. If you click on the image you can see the full image at high resolution.

The archive posting of this image is titled “Cones near Pits.” As you can see, to the north and east of the pits are some mesas (why they call them cones I do not know).

The pits are unusual, and appear to be some form of collapse. In the larger image several additional mesas can be seen at farther distances, but most of the overall terrain is remarkably flat and featureless, except for numerous small craters that appear either partly buried by dust or significantly eroded.

I am not going to guess at the geology that caused the pits and mesas. What I do want to focus on is the vastness of Mars. This location is on the southern edge of Utopia Basin, the second deepest basin on Mars. It is part of the planet’s endless northern plains, an immense region covering almost half the planet that tends to be at a lower elevation, is relatively smooth, and is thought by some scientists to be evidence of what was once an intermittent ocean. The global map of Mars below indicates the location of the above image with a black cross.
» Read more

The aging data relay spacecraft orbiting Mars

By the 2020s, NASA and other space agencies sending landers and rovers to Mars will be faced with a data-relay crisis, as the orbiters they presently use to provide communications with the Martian surface are aging, and no replacements are presently planned.

The venerable Mars Global Surveyor (MGS) and Mars Odyssey spacecraft were the first to employ data relay capabilities in the modern era of Mars exploration. They operated as relays for the twin Mars Exploration Rover missions until the arrival of the Mars Reconnaissance Orbiter (MRO) in 2006.

MGS entered into a safe mode in November 2006 and NASA later declared the mission over in January 2007 after the space agency failed to reestablish contact with the aging orbiter. The 12-year-old MRO and 17-year-old Odyssey have served as the primary data relays for Mars surface missions since.

More important, funding for a dedicated communications satellite called NEMO, planned for launch in 2022, has disappeared.

However, funding for NeMO has been largely phased out in favor of directing limited funds towards the development of the Mars Sample Return mission. Mars Sample Return has the primary objective of fetching samples that scientists plan to collect and cache using the Mars 2020 rover currently under development. The current Planetary Science Decadal Survey has listed the flagship sample return mission as the primary objective for NASA’s Mars program in the 2020s, along with requisite funding. The existing fleet of orbiting spacecraft at Mars, while aging, are in generally good health meaning the postponement of a new orbiter will require careful management of existing orbital assets into the next decade.

One of the reasons there is no funding for NEMO is that NASA has had to steal money from its planetary program to fund the cost overruns on the James Webb Telescope. Though this was never admitted publicly, the cuts that the Obama administration imposed on the planetary program were partly to pay for Webb. Thus, not only has that telescope killed almost all of NASA’s entire astrophysics program, it has damaged the planetary program as well.

The two Mars cubesats flying in formation with InSight

Even as the InSight lander heads to Mars, it is being accompanied by two test cubesats, the first such smallsats to ever fly an interplanetary mission.

The MARCO mission objective is a challenging one. The team will provide a dedicated relay during Mars InSight’s descent to the surface of the Red Planet on November 26, 2018. Rather than entering orbit, the CubeSats will pass 2,175 miles (3,500 kilometers) from Mars during the larger mission’s crucial landing phase. Mars will be 97.5 million miles (157 million kilometers) away at the time, making for an 8.7-light-minute communications lag from Mars to the Earth. The lag means that NASA engineers will need to wait 8.7 minutes to see whether the landing was successful, equivalent to Curiosity’s “seven minutes of terror;” meanwhile, if all goes well, MARCO will have a front-row seat to the show. While the success of the InSight mission isn’t dependent on MARCO, the CubeSats will provide a black box data recorder of all aspects of the mission’s descent.

If these cubesats succeed in accomplishing their engineering test missions, their true innovation will not be engineering but cost reduction. If they prove that cubesats can be designed as interplanetary probes, the costs to build and launch such missions will be drastically reduced. Not only do cubesats routinely use cheaper off-the-shelf components, they are far lighter than standard satellites, which means a smaller, cheaper rocket can launch them.

The data-relay test of these cubesats however is quite important, nonetheless. See my post above.

Atlas 5 successfully launches Mars lander InSight

ULA’s Atlas 5 rocket early this morning successfully launched NASA’s newest Mars lander InSight.

InSight will drill a seismic probe into the Martian surface and monitor earthquake activity. This will be the first time such monitoring will occur, and the probe is planned to do it for at least two years.

The launch puts the U.S. back in a tie with China for the lead in launches this year. The standings:

13 China
8 SpaceX
5 Russia
5 ULA

Volcano or Impact?

Elliptical crater with flow features

Cool image time! Yesterday the Mars Reconnaissance Orbiter (MRO) team released its monthly image dump of more than 500 new photographs, taken by the spacecraft’s high resolution camera. As I have started to do in the past few months, I am reviewing this collection and plan to post a few of the more interesting images over the next month. On the right is the first of this series. I have cropped and reduced the resolution to show here, but you can see the full resolution version if you click on the image.

The MRO team labels this image an “elliptical crater with flow features.” The first impression one gets from the image is that the impact that caused the crater came from the side and hit the ground obliquely, creating the crater’s oval shape and the lava-type flow features in the crater’s floor.

As is almost always the case with Martian geology, beware of first impressions. You need to give any feature both a more detailed look as well as a broader view to have any chance at understanding its context and geology.
» Read more

Alien world

Meridiani Planum
So what is it we are looking at in the image above? I have reduced the resolution slightly to fit it here, but you can see the full resolution image by clicking on the picture.

Is it a marble or granite kitchen counter? Nah, the surface is too rough.

Maybe it’s a modern abstract painting that we can find hanging in the Museum of Modern Art in New York. Nah, it has too much style and depth. Abstract art is much more shallow and empty of content.

Could it be a close-up of a just-opened container of berry-vanilla ice cream, the different flavors swirling and intertwined to enhance the eating experience? No, somehow it looks too gritty for ice cream.
» Read more

Heat shield for 2020 Mars rover cracks during testing

The heat shield to be used during landing by the U.S.’s 2020 Mars rover cracked during recent testing.

The heat shield’s structural damage, located near the shield’s outer edge, happened during a weeklong test at the Denver facility of contractor Lockheed Martin Space, according to a NASA statement released Thursday (April 26). The test was intended to subject the heat shield to forces about 20 percent greater than those it will experience when it hits the Martian atmosphere for entry, descent and landing operations.

The Mars 2020 team found the fracture on April 12. Mission management at NASA’s Jet Propulsion Laboratory in Pasadena, California, will work with Lockheed Martin to lead an examination of the cause of the crack and to decide if any design changes should be made, NASA officials said in the statement.

They do not expect this issue to cause them to miss the 2020 launch window. However, it is astonishing that the heat shield should fail in this manner. First, to save development costs this rover was essentially a rebuild of Curiosity. The new heat shield should have been the same design, and thus should have already been proven capable of surviving this test. Second, Lockheed Martin has been making heat shields of all kinds for decades. This is not cutting edge technology.

Third, note that Lockheed Martin is building Orion, and it also experienced cracks in the capsule’s structure (not its heat shield) during manufacture and testing.

Overall, these facts suggest that some fundamental manufacturing error has occurred, and that there might also be a quality control problem at Lockheed Martin.

Mars rover update: April 27, 2018

Summary: Curiosity’s exploration of Vera Rubin Ridge is extended, while an attempt by Opportunity to climb back up Perseverance Valley to reach an interesting rock outcrop fails.

For a list of past updates beginning in July 2016, see my February 8, 2018 update.

Curiosity

Curiosity's traverse map, Sol 2030

For the overall context of Curiosity’s travels, see Pinpointing Curiosity’s location in Gale Crater.

Since my March 21, 2018 update, it has become apparent that the Curiosity science team has decided to extend the rover’s research on Vera Rubin Ridge far beyond their original plans. They have continued their travels to the northeast well past the original nominal route off the ridge, as indicated by the dotted red line on the traverse map above. Along the way they stopped to inspect a wide variety of geology, and have now moved to the north and have actually begun descending off the ridge, but in a direction that takes the rover away from Mount Sharp and its original route. As noted in their April 25 update,
» Read more

Zooming in on a Martian surprise

Global map of Mars

Let’s take a journey. Above is a global map of Mars, showing its largest and well known geological features. While far smaller than Earth, its lack of oceans means that Mars’ actual dry surface has about the same square footage as the continents of Earth. It is a vast place. Getting a close look at every spot is going to take many decades of work, and probably won’t be finished until humans are actually walking its surface.

Let’s pick a spot, zoom in and find out what’s there.
» Read more

Imaging restrictions on Mars Reconnaissance Orbiter

Young lava flows on Mars

In releasing a new set of four captioned images today from the high resolution camera on Mars Reconnaissance Orbiter (MRO), the captions from each also included this paragraph:

Note: HiRISE has not been allowed to acquire off-nadir targeted observations for a couple of months due to MRO spacecraft issues, so many high-priority science objectives are on hold. What can be usefully accomplished in nadir mode is sampling of various terrains. Especially interesting in this observation are bedrock exposures, which provide information about the geologic history of Mars. “Nadir” refers to pointing straight down.

The image restrictions are probably related to either or both the battery and and reaction wheel issues noted in recent status report. What it means is that though they can still take good and revealing images, like the one to the right, cropped and reduced to post here, showing very young lava flows only a few million years old, scientists have less flexibility in what they can photograph.

If you click on the image you can see the full resolution version. The reason scientists think these are young flows is that they are so few craters here. The lava flows are located in the southern lava flows coming off the large volcano Elysium Mons, which sits due west of Mars’ largest volcano, Olympus Mons. These flows are also in the transition zone between Mars’ low flat northern plains and its high rough southern terrain.

When and if the spacecraft can resume full imaging operations is unknown. Based on the status report, it might never do so.

Is it a volcano or an impact crater? Mars Express wants to know!

Europe’s Mars Express orbiter has taken a high resolution image of Ismenia Patera, a very large crater located in the Arabia Terra region of Mars, the largest part of the transition zone between the low flat northern plains and the high rough southern terrain.

The crater is intriguing to scientists because they are not sure if it was created by an impact, or a volcano.

Certain properties of the surface features seen in Arabia Terra suggest a volcanic origin: for example, their irregular shapes, low topographic relief, their relatively uplifted rims and apparent lack of ejected material that would usually be present around an impact crater.

However, some of these features and irregular shapes could also be present in impact craters that have simply evolved and interacted with their environment in particular ways over time.

There is also additional evidence that this region was once home to volcanic activity. If so, that activity would have changed the terrain, and thus made its geological history more complex and difficult to decipher, a fact that is important since this is also a region that might have been at the edge of theorized northern Martian Ocean.

A Martian snake of collapsed hills

A Martian snake of collapsed hills

Close-up of collapsed hills

Time to once again delve into this month’s release of high resolution images from Mars Reconnaissance Orbiter. The image above, cropped, rotated, and reduced in resolution to post here, shows a string of strange mounds or hills, each with similar collapse features on their tops. If you click on the picture, you can see the full resolution image, rotated properly with north up. You can also go to the MRO post, which provides some additional information.

The white box indicates the location of the cropped close-up, at full resolution, to the right. This area is typical across the entire snake-like ridge. You have these mounds or hills, each with chaotic depressions at their tops. The depressions suggest that this ridge follows an underground void, like a lava tube. The ridge-like nature of the line of hills also suggest that this tube has been exposed by erosion over time, with the surrounding terrain more easily blown or washed away while the more resistant ridge remains.

At the same time, the line of hills is baffling. Why would a lava tube expand periodically to form something that looks like a string of pearls?

The location of this snaking ridge provides some additional context.
» Read more

Status update on Mars Reconnaissance Orbiter

Link here. The story is focused on the decision by NASA to hold off launching a replacement for MRO and instead keep it operating for another decade. In telling this story, however, the article also provides us a detail look at the spacecraft’s present condition.

[A]ging batteries and gyroscopes, used to store electricity and aid navigation, will have to be carefully watched in the coming years to keep the mission going. “We found that they weren’t charging at full capacity,” Tamppari said of the batteries. MRO charges its batteries through its solar arrays while in sunlight. During night passes over Mars, the orbiter draws electricity from its batteries for about 40 minutes during each two-hour lap around the planet. The spacecraft now charges its batteries higher than before, NASA said, and engineers sent up commands for MRO to reduce the draw on the batteries while in shadow.

MRO’s two inertial measurement units are also showing signs of their age. Each redundant unit contains three gyroscopes and three accelerometers, feeding data about the spacecraft’s orientation to on-board computers. One measurement unit likely in the final months of its useful lifetime, Tamppari said, and the other is showing signs of degradation.

Ground controllers found a work-around by implementing an “all-stellar” navigation mode on MRO in March. The new technique allows the orbiter to sense the positions of the stars to determine which way it is pointing. “In all-stellar mode, we can do normal science and normal relay,” said Dan Johnston, MRO project manager at JPL, in a statement released in February. “The inertial measurement unit powers back on only when it’s needed, such as during safe mode, orbital trim maneuvers, or communications coverage during critical events around a Mars landing.”

There’s more at the link. Since MRO is also used as the main communications relay satellite between the Martian ground-based probes and the Earth, the story also outlines the communications capabilities of all spacecraft presently orbiting Mars. All told, it seems that if MRO fails the research on the surface will be significantly impacted, even if the rovers and landers are all still working.

1 55 56 57 58 59 80