Curiosity in trouble?

The Mars rover Curiosity has temporarily ceased work as engineers investigate what appears to be a short circuit in its electrical system.

The space agency said Tuesday that the electrical problem was discovered over the weekend as Curiosity tried to transfer bits of powder from a rock that it had drilled into. The short circuit stopped the rover’s robotic arm. Engineers are diagnosing the issue, and the testing is expected to take several days.

The worrisome components of this story are the words “short circuit” and “drill”, because of a known design flaw in the electrical system of the rover’s drill. It could very well be that this flaw, which could cause a short that could bring down the rover, is the cause of this electrical problem.

Methane does exist in the Martian atmosphere

The uncertainty of science: Curiosity has confirmed the presence, and fluctuation, of methane in the local Martian atmosphere.

SAM [Sample Analysis at Mars, one of Curiosity’s instruments] has been detecting basal levels of methane concentration of around 0,7 ppbv, and has confirmed an event of episodic increase of up to ten times this value during a period of sixty soles (Martian days), i.e., of about 7 ppvb. The new data are based on observations during almost one Martian year (almost two Earth years), included in the initial prediction for the duration of the mission (nominal mission), during which Curiosity has surveyed about 8 kms in the basin of the Gale crater.

Since methane has a short life expectancy, something must be doing something to generate it.

Jet lag is worse on Mars

Research and actual experience has found that adjusting to the slightly longer Martian day is not as easy as you would think.

If you’re on Mars, or at least work by a Mars clock, you have to figure out how to put up with the exhausting challenge of those extra 40 minutes. To be exact, the Martian day is 24 hours, 39 minutes, and 35 seconds long, a length of day that doesn’t coincide with the human body’s natural rhythms. Scientists, Mars rover drivers, and everyone else in the space community call the Martian day a “sol” to differentiate it from an Earth day. While it doesn’t seem like a big difference, that extra time adds up pretty quickly. It’s like heading west by two time zones every three days. Call it “rocket lag.”

How to drill rocks on Mars

Engineers have found that to properly drill on Mars, Curiosity need only use its lowest power settings.

The new drilling procedures essentially call for the rover to use its lowest energy setting right from the beginning, rather than starting with a setting a few levels up. Curiosity has six settings on its drill that have a nearly 20-fold range in energy. The drill has only been used three times before Curiosity reached Mount Sharp (Aeolis Mons), its ultimate science goal, late last year.

On those three occasions and when the drill was used once at Mount Sharp, Curiosity began its investigations at the drill’s Level 4. The first rock probed at Mount Sharp broke under this pressure. The new algorithm instead starts at Level 1 and only progresses upwards if drilling proves too slow.

The engineers have found that the rocks they have drilled into on Mars have been more fragile that expected, which actually shouldn’t be a surprise, due to the lower gravity. In fact, this one simple fact probably reveals a great deal of important information to geologists about the geology of Mars and how it formed.

Work stalls on Mars One robotic missions

Mars One, the company that just this week announced the 100 finalists in its competition to send 24 people on a one-way trip to Mars, has quietly suspended all work on two robotic missions heralded as precursors to that manned mission.

These facts just add weight to my conviction that the Mars One competition is at the moment nothing more than a reality television show. It is a cool idea for a television show, but journalists should stop selling it as anything more than that.

A television reality show to pick 24 candidates to go to Mars — one way

The competition heats up? The private effort to choose 24 people to make a one-way flight to Mars has narrowed its candidates down from more than two hundred thousand to 100 finalists.

More here.

As interesting as this effort is, it is very important to remember that it is not an effort to fly these people to Mars. They don’t have the money and no one yet has the technical ability to make the flight. What they are actually doing is putting together a television reality show, where these 100 individuals will compete to be the final 24. If they do it right, which I am somewhat doubtful, the show will be entertaining and scientifically educational.

The mystery of Martian plumes

The uncertainty of science: Scientists struggle to explain the discovery by amateurs of Martian atmospheric plumes 125 to 150 miles high.

Amateur astronomers spotted the bizarre feature rising off the edge of the red planet in March and April of 2012. It looked like a puff of dust coming off the surface, but it measured some [125 to 155] kilometres high. That is much higher than would be expected from the lower-altitude dust storms that rage across the planet. Now a team of astronomers proposes that the plume was either a cloud of ice particles or a Martian aurora. But neither possibility fully explains the plume — raising new questions about the state of the Martian atmosphere.

Read it all. No explanation really works to explain the plume’s height.

A drone for Mars

Engineers at JPL have begun testing prototypes of a drone that would be used on Mars to aid future rovers.

The newest solution proposed by JPL is the Mars Helicopter, an autonomous drone that could “triple the distances that Mars rovers can drive in a Martian day,” according to NASA. The helicopter would fly ahead of a rover when its view is blocked and send Earth-bound engineers the right data to plan the rover’s route.

Ancient fossils on Mars?

A close look at features on the Martian surface seen by Curiosity suggests to one scientist the presence of ancient fossils of carpet-like microbiology.

On Earth, carpet-like colonies of microbes trap and rearrange sediments in shallow bodies of water such as lakes and costal areas, forming distinctive features that fossilize over time. These structures, known as microbially-induced sedimentary structures (or MISS), are found in shallow water settings all over the world and in ancient rocks spanning Earth’s history.

Nora Noffke, a geobiologist at Old Dominion University in Virginia, has spent the past 20 years studying these microbial structures. Last year, she reported the discovery of MISS that are 3.48 billion years old in the Western Australia’s Dresser Formation, making them potentially the oldest signs of life on Earth.

In a paper published online last month in the journal Astrobiology (the print version comes out this week), Noffke details the striking morphological similarities between Martian sedimentary structures in the Gillespie Lake outcrop (which is at most 3.7 billion years old) and microbial structures on Earth.

Noffke is very careful in her analysis. She doesn’t claim any proofs, only that her expert eye sees the same things on both planets. Most intriguing.

India’s Mangalyaan Mars probe working fine

After three months in orbit around Mars, India’s Mangalyaan spacecraft continues to function as designed, and is expected to operate beyond its planned six month mission.

In the last three months, Mangalyaan has captured nearly 300 pictures. On an average the spacecraft takes four pictures in three days. Besides capturing the images of dust storm activities, it has also taken images of comet Siding Spring.

Because of Mangalyaan’s orbit and the wide-angle nature of its camera the pictures are generally global. This output also is not spectacular compared to other probes. Nonetheless, this is an achievement for which India should be proud.

Curiosity finds organic materials on Mars, including fluctuating levels of methane

Data from Curiosity has found both organic chemicals in the surface of Mars as well as quickly changing levels of methane in the nearby atmosphere.

NASA’s Mars Curiosity rover has measured a tenfold spike in methane, an organic chemical, in the atmosphere around it and detected other organic molecules in a rock-powder sample collected by the robotic laboratory’s drill. “This temporary increase in methane — sharply up and then back down — tells us there must be some relatively localized source,” said Sushil Atreya of the University of Michigan, Ann Arbor, and Curiosity rover science team. “There are many possible sources, biological or non-biological, such as interaction of water and rock.”

The organic material does not prove there is or was ever life on Mars. What it shows is that conditions on Mars could have once supported life. The methane detection, however, is a more significant finding, as it suggests that something very nearby to Curiosity is causing the spike. It could be life, or it could be chemical activity, but in either case, it means there is activity.

The one caveat is that the spike still did not amount to much, 7 parts per billion. Whatever is causing it is not really doing very much.

Evaporating dry ice chunks create gouges on Mars

Scientists think they have solved the mystery of the gouges that appear seasonally on some hillsides on Mars: Chunks of dry ice that slide down the slope and then evaporate, leaving no trace.

During the martian winter, carbon dioxide ice freezes over parts of the planet’s surface and sublimates back into a gas during the spring thaw. But according to the model presented here today at a meeting of the American Geophysical Union, chunks of warming dry ice may also break off from the crests of dunes and skid down slopes. This is no ordinary tumble—according to the model, the bases of the chunks are continually sublimating, resulting in a hovercraftlike motion that gouges the dune while propelling the ice down slopes. Solid ice that survives to the bottom settles into a pit before dissipating back into the atmosphere.

Curiosity confirms that Gale Crater was once a water filled lake.

New geological data from Curiosity suggests that the interior of Gale Crater was shaped by sediments placed there by the rise and fall of a lake over millions of years.

The data also confirms that conditions on Mars were good enough for liquid water to be maintained on the surface for long periods of time. The problem is that scientists still do not understand how Mars could have maintained such kind of atmosphere and environmental conditions, based on its location and size.

Organic material from Mars?

The uncertainty of science: Scientists theorize that the carbon material found in a 2011 meteorite could be Martian biological material.

Ejected from Mars after an asteroid crashed on its surface, the meteorite, named Tissint, fell on the Moroccan desert on July 18, 2011, in view of several eyewitnesses. Upon examination, the alien rock was found to have small fissures that were filled with carbon-containing matter. Several research teams have already shown that this component is organic in nature. But they are still debating where the carbon came from.

Chemical, microscopic and isotope analysis of the carbon material led the researchers to several possible explanations of its origin. They established characteristics that unequivocally excluded a terrestrial origin, and showed that the carbon content were deposited in the Tissint’s fissures before it left Mars.

Comet Siding Spring’s fly-by of Mars changed the planet’s atmosphere

Data obtained by the various Mars orbiters during the close fly-by of Comet Siding Spring of Mars has revealed that the comet created a new temporary layer in the planet’s atmosphere.

The European Space Agency’s Mars Express spacecraft detected an increase in electrons in Mars’ upper atmosphere, partly ionising it. This was attributed to fine cometary dust penetrating the atmosphere, which led to a meteor storm of thousands of meteors per hour. The increase in electrons led to the creation of a temporary new layer of charged particles in the ionosphere, which runs from an altitude of 120 kilometres to several hundred kilometres above. This is the first time such an event has been seen, even on Earth the extra density of electrons was measured to be five to ten times higher than normal by NASA’s Mars Reconnaissance Orbiter. Another NASA spacecraft, MAVEN, which also observed the new layer in the ionosphere, will monitor for any long-term events as it goes about its regular duties of studying Mars’ atmosphere.

MAVEN’s Imaging Ultraviolet Spectrograph was able to ascertain the species of ions that flooded into the ionosphere from the comet, the first time a comet that has come direct from the distant Oort Cloud has been sampled in this way. It detected the signal of magnesium, iron and sodium ions following the meteor shower, a signal that dominated Mars’ ultraviolet spectrum for hours afterwards, taking two days to dissipate.

The chemistry that MAVEN detected appears superficially somewhat similar to the chemistry that Rosetta is detecting at Comet 67P/C-G, though there are differences.

A geological score for Curiosity!

Spectroscopy from Curiosity’s most recent drilling has been found to match and thus confirm the spectroscopy of the same spot taken years ago from orbit.

In observations reported in 2010, before selection of Curiosity’s landing site, a mineral-mapping instrument on NASA’s Mars Reconnaissance Orbiter provided evidence of hematite in the geological unit that includes the Pahrump Hills outcrop. The landing site is inside Gale Crater, an impact basin about 96 miles (154 kilometers) in diameter with the layered Mount Sharp rising about three miles (five kilometers) high in the center.

“We’ve reached the part of the crater where we have the mineralogical information that was important in selection of Gale Crater as the landing site,” said Ralph Milliken of Brown University, Providence, Rhode Island. He is a member of Curiosity’s science team and was lead author of that 2010 report in Geophysical Research Letters identifying minerals based on observations of lower Mount Sharp by the orbiter’s Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). “We’re now on a path where the orbital data can help us predict what minerals we’ll find and make good choices about where to drill. Analyses like these will help us place rover-scale observations into the broader geologic history of Gale that we see from orbital data.”

This is a significant finding. Not only does this data now prove that the orbital data is correct, it demonstrates that scientists can now use that orbital data to direct Curiosity to even more interesting geological surface features. In fact, this ground-based data will help them calibrate all their orbital data more precisely, thus making our geological knowledge of Mars more accurate and reliable.

India begins tests of larger rocket engine

The competition heats up: Indian engineers have successfully completed their first tests of a new more powerful upper stage engine for their biggest launch rocket.

Taking a big step forward in the development of bigger and more powerful locally-built rocket engines, the Liquid Propulsion Systems Centre (LPSC) on Monday successfully conducted the first ‘cold flow test’ on the CE-20 cryogenic engine, which will power the upper stage of the Geosynchronous Satellite Launch Vehicle-Mk III (GSLV-Mk III). “It’s a milestone,” LPSC director Dr K Sivan told ‘Express’ here on Tuesday, confirming that the test had gone as planned at the LPSC facility in Mahendragiri, Tamil Nadu. The first ‘hot test’ – where the engine will be fired for a few seconds- will be performed in three weeks’ time, Sivan said.

In a cold test, the propellants are not ignited. On Monday, the fuel, Liquid Hydrogen (LH2), and the oxidiser, Liquid Oxygen (LOX), were injected into the chambers for the checking of various parameters.

In related news, Mangalyaan has taken another global view of Mars.

Mars orbiters survive comet fly-by

Press releases from science teams for Mars Reconnaissance Orbiter, MAVEN, and Mars Odyssey confirm that all three spacecraft are functioning properly after Comet Siding Spring’s fly-by of Mars today.

All three spacecraft also did observations of the fly-by, the data of which will take a few days to download. Stay tuned.

Update: Europe’s Mars Express and India’s Mangalyaan orbiters are also reported to have escaped damage during the fly-by.

The X-37B goes to Mars

After 675 days in space, the Air Force’s reusable X-37B mini-shuttle successfully returned to Earth today, completing its second flight in space.

There has been a lot of speculation about the secret payloads that the two X-37B’s have carried into space. The Air Force has been very tight-lipped about this, though they have said this:

“The primary objectives of the X-37B are twofold: reusable spacecraft technologies for America’s future in space, and operating experiments which can be returned to, and examined, on Earth,” Air Force officials wrote in on online X-37B fact sheet. “Technologies being tested in the program include advanced guidance, navigation and control; thermal protection systems; avionics; high-temperature structures and seals; conformal reusable insulation, lightweight electromechanical flight systems; and autonomous orbital flight, re-entry and landing,” they added.

The obvious advantage of the X-37B is that it allows the Air Force to test these new technologies in space, then bring them back to Earth for detailed analysis.

However, I think the most important engineering knowledge gained from this flight will not be from the payload, but from the X-37B itself.
» Read more

First results back from the U.S. MAVEN Mars probe

Scientists have released the first results from NASA’s MAVEN probe orbiting Mars, designed to study that planet’s upper atmosphere.

As expected, the spacecraft has quickly found evidence of the Martian atmosphere leaking away into space.

Hydrogen appears to be leaving the planet’s atmosphere in clumps and streams that reach about 10 Mars radii into space, said Mike Chaffin, a MAVEN scientist also at the University of Colorado, who discussed the results at a 14 October news briefing. The hydrogen comes from water vapour that breaks apart in the upper atmosphere; because hydrogen is so much lighter than oxygen, it escapes into space relatively easily. “That’s effectively removing water from the Martian atmosphere,” says Chaffin.

Other images show oxygen and carbon drifting away from the planet, although these heavier atoms cluster closer to Mars than hydrogen. Deep within the atmosphere, oxygen forms ozone molecules that accumulate near Mars’s south pole.

1 65 66 67 68 69 80