China targets 2028 for its own Mars sample return mission

According to a report today in China’s state-run press, it now hopes to launch its own Mars sample return mission in 2028, dubbed Tianwen-3.

The report is very vague about the missions design. It notes that it will involve two launches, including “key technologies such as collecting samples on the Martian surface, taking off from the Red Planet, [and] rendezvous on the orbit around Mars.”

Based on China’s overall track record for its planetary program, it is likely that the launch will likely take place somewhat close to this schedule, though a delay of one or two years would not be unreasonable. If so, we are looking at either two or three different projects to bring Mars samples back to Earth at almost the same time.

The first is the NASA/ESA joint Mars sample return mission, which is presently far behind schedule with large cost overruns, all because the mission design has been haphazard and confusing. At the moment it involves an American lander, a European orbiter and return capsule, a Mars launch rocket to be built by Lockheed Martin, and at least one Mars helicopter. None of this however is certain, as NASA is right now asking industry for suggestions for redesigning the mission. It is presently hoping to bring its samples back sometime in the 2030s.

The second is this China mission, which appears to have some of the same planned components, which is not surprising considering China’s habit of copying or stealing other people’s ideas.

A third sample return mission might also be flown, by SpaceX using its Starship spaceship and Superheavy rocket. Both are built with Mars missions specifically in mind. SpaceX has also ready done work locating a preliminary landing zone. If so, it could possible attempt this mission at about the same time, independent of both China or NASA.

Or it might simply offer Starship as part of the redesigned NASA sample return mission. There is also the chance SpaceX would do both.

If I had to bet, I would say SpaceX (on its own) is the most likely to do this first, with China second. If SpaceX teams up with NASA then it will be a close race between NASA and China.

NASA admits that its Mars Sample Return project needs new ideas

The present plan for Mars Sample Return
The present plan for Mars Sample Return

In issuing yesterday its reponse [pdf] to the February 28, 2024 audit [pdf] by NASA’s inspector general (IG) of its Mars Sample Return mission (MSR), NASA has admitted that its Mars Sample Return project needs new ideas and major changes. From the press release:

“The bottom line is, an $11 billion budget is too expensive, and a 2040 return date is too far away,” said [NASA administrator Bill] Nelson.

The agency will today issue a call for proposals from the private sector for alternative ideas for picking up the samples on Mars and getting them up into orbit.

This NASA response to the IG report however changes little else in overall project, and almost certainly will not succeed in either reducing cost or shortening the timeline in any way.
» Read more

Inspector General: Mars Sample Return mission in big trouble

The present plan for Mars Sample Return

Though the audit published today [pdf] by NASA’s inspector general of the NASA/ESA Mars Sample Return mission partnership tries to couch its language positively, the conclusion one reaches by reading the report is that the project is a mess and will almost certainly not fly when scheduled in 2029, and might even get delayed so much that the Perseverance rover on Mars — an essential component of the mission plan — might no longer be operational at that time.

First the budget wildly out of control.

The trajectory of the MSR Program’s life-cycle cost estimate, which has grown from $2.5 to $3 billion in July 2020, to $6.2 billion at KDP-B in September 2022, to an unofficial estimate of $7.4 billion as of June 2023 raises questions about the affordability of the Program.

In addition, the audit noted that this is not the end, and that based on another independent review the budget could balloon to $8 to $11 billion before all is said and done. (I will predict that as presently designed, that budget will likely reach $15 billion.)
» Read more

NASA “pauses” Mars Sample Return mission

Perseverance's first set of core samples, placed on the floor of Jezero Crater
Perseverance’s first set of core samples,
placed on the floor of Jezero Crater

Faced with a strong threat of major budget cuts from the Senate, NASA has decided to “pause” the Mars Sample Return mission (MSR) by ramping back some work to consider major changes to the project.

We brought Steve [Thibault] downtown to be the chief engineer in the Headquarters MSR program office … leading a team that consists of all the implementing centers and our European colleagues to stand back and take a look at the architecture with a fresh set of eyes and figure out not only just how to improve our technical margins and make the mission more robust, but also to see if there are ways to implement it in ways to potentially save costs. We’re also going off and listening to industry and seeing what ideas they have.

While the House had approved NASA’s budget request that exceeded $1 billion to complete the mission (more than double its original price tag), the Senate responded by only allocating one quarter of that, demanding NASA come up with a plan that would match its original budget number. This Senate pressure was enhanced by an independent review that harshly criticized the present design of the project, which involves three NASA centers, European participation, and multiple American companies, all building different components that must all interact perfectly.

Lacking funds to build its spacecraft, the VERITAS project team goes to Iceland

Because NASA has cut almost all funding for the VERITAS mission to Venus in order to fund its overbudget, badly managed, and behind schedule Mars Sample Return mission, the VERITAS science team, held over with only a tiny holding budget for the next seven years, has taken a geology trip to Iceland to study the volcanoes there.

Early last month, one such field campaign took the mission’s science team to a barren and rocky region in Iceland. There, they studied rocks and surfaces near an active volcano named Askja. Such volcanic areas are being used as analogs of Venus to understand the different types of eruptions that may occur on its surface, and to test out various technologies and techniques to prepare for the VERITAS (or Venus Emissivity, Radio Science, InSAR, Topography and Spectroscopy) mission, which is not expected to launch sooner than 2031.

The article at the link focuses on this research, but the real story is this quote:

The VERITAS science team — which is being supported by a shoestring budget of $1.5 million until 2028, after NASA pulled the mission’s funding earlier this year and disbanded its entire engineering wing — collected samples of young rocks and recent lava flows near the Askja volcano that will be analyzed in a lab, according to a NASA statement.

The reason the budget was pulled was to scrap together any funds available from within NASA’s planetary program for that Mars Sample Return Mission, which is doing to the planetary program what the Webb Space Telescope did to NASA’s astronomy program: killing it. As long as NASA and Congress remain committed to that sample return mission, do not expect many new planetary missions to other planets to fly. Its budget has already quadrupled, and its launch is already expected to be delayed. Worse, the mission’s basic design remains tentative, with many major components nothing more than cool graphics on powerpoint presentations, despite having spent gigantic amounts already.

Independent review: NASA’s Mars sample return mission is in big trouble

Perseverance's first set of core samples, placed on the floor of Jezero Crater
Perseverance’s first set of core samples,
placed on the floor of Jezero Crater

An independent review of NASA’s Mars sample return mission (MSR) to pick up the core samples being collected by the rover Perseverance has concluded that the project has serious fundamental problems that will likely cause it to be years late and billions over-budget, assuming it ever flies at all.

You can read the report here [pdf]. After thirteen pages touting the wonders and importance of the mission to get those samples back to Earth, the report finally gets to its main point:

However, MSR was established with unrealistic budget and schedule expectations from the beginning. MSR was also organized under an unwieldy structure. As a result, there is currently no credible, congruent technical, nor properly margined schedule, cost, and technical baseline that can be accomplished with the likely available funding.

Technical issues, risks, and performance-to-date indicate a near zero probability of [the European Mars orbiter intended to bring the sample back to Earth] or [the Earth sample facility] or [the Mars ascent vehicle] meeting the 2027/2028 Launch Readiness Dates (LRDs). Potential LRDs exist in 2030, given adequate funding and timely resolution of issues.

• The projected overall budget for MSR in the FY24 President’s Budget Request is not adequate to accomplish the current program of record.

• A 2030 LRD for both [the sample return lander] and [the Mars orbiter] is estimated to require ~$8.0-9.6B, with funding in excess of $1B per year to be required for three or more years starting in 2025.

Based on this report, a mission launch in 2030 is only “potentially” possible, but only wild-eyed dreamers would believe that. It also indicates that the budget for each component listed above requires several billion dollars, suggesting the total amount needed to achieve this mission could easily exceed in the $30 to $40 billion, far more than the initial proposed total budget for the U.S. of $3 billion.

None of this is really a surprise. Since 2022 I have been reporting the confused, haphazard, and ever changing design of the mission as well as its ballooning budgets. This report underlines the problems, and also suggests, if one reads between the lines, that the mission won’t happen, at least as presently designed.

The report does suggest NASA consider “alternate architectures in combination with later [launch readiness dates].” Can you guess what might be an alternate architecture? I can, and its called Starship. Unlike the proposed helicopters and ascent rocket and Mars Orbiter, all of which are only in their initial design phases, Starship is already doing flight tests (or would be if the government would get out of the way). It is designed with Mars in mind, and can be adapted relatively quickly for getting those Perservance core samples back.

Otherwise, expect nothing to happen for years, even decades. In February 2022 I predicted this mission would be delayed from five to ten years from its then proposed ’26 launch date. A more realistic prediction, based on this new report, is ten to twenty years, unless NASA takes drastic action, and the Biden administration stops blocking Starship testing.