Intuitive Machines: Odysseus is dead

In a tweet on March 23, 2024 the company Intuitive Machines announced that the mission of its first lunar lander, Odysseus, is officially over with the spacecraft failing to come back to life after sunrise on the Moon.

As of March 23rd at 1030 A.M. Central Standard Time, flight controllers decided their projections were correct, and Odie’s power system would not complete another call home.

The engineers had begun listening for a signal on March 20th, when their computer models said enough sunlight would reach the solar panels to charge its communications system.

The failure of the lander to survive the lunar night is a disappointment, but it was never considered a strong possibility. Right now the company’s main task is to prevent the issues that caused Odysseus to land too fast and tip over, so that the next two missions, scheduled for either this year or next, each deliver their payloads properly on the Moon’s surface.

Final images from Odysseus, lying on its side

One of three pictures downloaded after landing
Click for original picture.

In a press conference yesterday, NASA and the private company Intuitive Machines released three pictures taken by the Odysseus lunar lander after it came down a bit too fast, skidded on the ground so that one leg broke, and then tilted over.

The first images from the lunar surface are now available and showcase the orientation of the lander along with a view of the South Pole region on the Moon. Intuitive Machines believes the two actions captured in one of their images enabled Odysseus to gently lean into the lunar surface, preserving the ability to return scientific data.

The best picture, reduced and annotated to post here, is to the right. The spacecraft is tilted about 30 degrees from the vertical. Another picture showed the broken leg on the lander’s other side. The “two actions” mentioned in the NASA quote above refer to the issues that caused the broken leg: the limited ground data the lander used to land, and its larger than expected lateral speed.

The spacecraft is expected to be shut down by today because of lack of power and the advent of the long lunar night. Company officials remain hopeful it will come back to life when the sun rises in several weeks.

Officials from both NASA and Intuitive Machines have correctly noted that this was an engineering test mission, so even these failures make it a success in that the company can use them to improve the next lander. Nonetheless, it would have been nice if things had worked better on this first flight, especially because the problem that led to all the breakdowns, the failure to turn the lander’s range finding system back on after installation on the rocket, was an incredibly stupid human error that should not have happened at all.

Odysseus’ tip-over likely caused because it landed without good elevation data

It appears that the improvised switch to a NASA range finder instrument just before landing only partly worked during Odysseus’s landing attempt on the Moon, causing the spacecraft to hit the ground at too great a speed with too much laterial motion, resulting in the snapping of one leg and the lander tipping over.

Apparently, Odysseus could no longer process altitude data from the NASA instrument once it was within 15 kilometers of the surface. It had to rely on its optical cameras, a poor substitute.

By comparing imagery data frame by frame, the flight computer could determine how fast it was moving relative to the lunar surface. Knowing its initial velocity and altitude prior to initiating powered descent and using data from the inertial measurement unit (IMU) on board Odysseus, it could get a rough idea of altitude. But that only went so far. “So we’re coming down to our landing site with no altimeter,” Altemus said.

Unfortunately, as it neared the lunar surface, the lander believed it was about 100 meters higher relative to the Moon than it actually was. So instead of touching down with a vertical velocity of just 1 meter per second and no lateral movement, Odysseus was coming down three times faster and with a lateral speed of 2 meters per second.

Though the spacecraft landed upright, the high speed and sideways motion caused one leg to snap, and the spacecraft then fell over. In this sideways position Odysseus’ main solar panel could not get enough sunlight, forcing the mission to end prematurely.

A final press conference summing up the mission is scheduled for 2 pm (Eastern) today.

Was the mission a success? The failures and problems during touchdown illustrated engineering and management issues that must be addressed before the next flight. At the same time, the mission’s number one goal was to soft land on the Moon, and it did do so, even with those serious engineering problems.

More important, this flight’s first and foremost goal was an engineering test of that technology. In this sense that mission succeeded brilliantly, revealing those last technical issues.

First image from Odysseus on the lunar surface

Odysseus' view on the Moon
Click for original image.

Engineers have managed to finally download several images from Intuitive Machines’ Odysseus lunar lander, lying on its side on the Moon several hundred miles from the south pole. Five pictures were taken as the lander approached the ground. A sixth, to the right and cropped and reduced to post here, was taken after landing using a fish-eye lens. You can see two of the lander’s legs, and I think the bright spot on the horizon is the Sun.

Odysseus captured this image approximately 35 seconds after pitching over during its approach to the landing site. The camera is on the starboard aft-side of the lander in this phase.

Unfortunately, the lander’s fallen position appears to be limiting the amount of sunlight its solar panels are receiving, and thus engineers expect to shut the spacecraft down sometime today in anticipation of the lunar night. It is very doubtful Odysseus will survive that night and resume operations during the next lunar day.

LRO locates and photographs Odysseus on lunar surface

Overview map
Click for original LRO image of Odysseus

Scientists using Lunar Reconnaissance Orbiter (LRO) this weekend located and photographed Intuitive Machines’ Odysseus Nova-C lunar lander at a height of 56 miles during its first orbit over the site.

The inset in the map to the right shows the lander, with the white dot marking its landing site, several miles to the south of the planned landing site, as indicated by the yellow dot.

Odysseus came to rest at 80.13 degrees south latitude, 1.44 degrees east longitude, 8,461 feet (2,579 meters) elevation, within a degraded one-kilometer diameter crater where the local terrain is sloped at 12 degrees.

That slope could by itself explain why the lander tipped over and ended up on its side. First, it landed faster than planned. Second, Intuitive Machines designed this Nova-C lander with a relatively tall configuration, which gives it a high center of gravity. Hitting the ground fast and on such a slope could easily have been enough for momentum to tilt it over after touchdown.

Odysseus is on its side, some antennas blocked

It appears the reason communications with Intuitive Machines’ Odysseus lunar lander has been so difficult since its landing yesterdary is that something caused it to fall over so that it is now lying on its side, blocking some of its antennas.

Intuitive Machines initially believed its six-footed lander, Odysseus, was upright after Thursday’s touchdown. But CEO Steve Altemus said Friday the craft “caught a foot in the surface,” falling onto its side and, quite possibly, leaning against a rock. He said it was coming in too fast and may have snapped a leg. “So far, we have quite a bit of operational capability even though we’re tipped over,” he told reporters.

But some antennas were pointed toward the surface, limiting flight controllers’ ability to get data down, Altemus said. The antennas were stationed high on the 14-foot (4.3-meter) lander to facilitate communications at the hilly, cratered and shadowed south polar region.

Its exact location also appears to be several miles from its intended landing site next to the crater Malapart A. Scientists who operate Lunar Reconnaissance Orbiter (LRO) hope orbital images this weekend will identify the spacecraft’s precise location.

The company also revealed that the reason its own laser guidance system would not function — requiring a quick software patch allowing the spacecraft to use a different NASA system — was because “a switch was not flipped before flight.”

Because of this switch in navigation equipment it was decided to cancel the release of the student-built camera probe dubbed Eaglecam that was supposed to be released when Odysseus was about 100 feet above the surface and take images of the landing. Instead, it is now hoped it can be released post landing and get far enough away to look back and capture photos of the lander.

All these problems however do not make this mission a failure. Like Japan’s SLIM lander, the primary goal of this mission was to demonstrate the technology for softlanding an unmanned spacecraft on the Moon. Intuitive Machines has succeeded in this goal. Though obviously some changes must be made to improve this engineering, the success with Odysseus strongly suggests the next mission later this year will do far better.

Odysseus appears to have landed successfully

The privately built Odysseus lunar lander appears to have landed successfully near the south pole of the Moon, though ground controllers have not yet gotten full confirmation that all systems are functioning.

As stated by the mission director, after noting that they were getting a faint signal from the lander’s high gain antenna:

All stations, this is mission director on IM-1. We are evaluating how we can refine that signal and dial in the pointing for our dishes. What we can confirm without a doubt is that our equipment is on the surface of the Moon and we are transmitting. So congratulations IM team. We’ll see how much more we can get from that.

Shortly thereafter the company and NASA ended the live stream.

At this time they do not yet know exactly where the lander touched down, or whether it did so without damage. The signal from the high gain antenna suggests the communications system is intact as well as the antenna, but the lack of further confirmation suggests damage to other instruments, though it is also possible that the signal is not yet firm enough to obtain data from other instruments.

More updates to follow, without doubt.

Live stream of landing of Odysseus on Moon

South Pole of Moon with landing sites

UPDATE: The engineering team has decided to delay the landing attempt by one lunar orbit, pushing it back to 6:24 pm (Eastern). The live stream begins well before then, so that NASA can get in a lot of blather and propaganda, so feel safe waiting to tune in until 6 pm (Eastern).
——————-
Capitalism in space: I have embedded below the NASA live stream for the presently scheduled 5:30 pm (Eastern) landing on the Moon of Intuitive Machines Nova-C lunar lander dubbed Odysseus.

The green dot on the map to the right marks the planned landing site, about 190 miles from the Moon’s south pole. This will be the closest attempted landing so far to that pole, and if successful it will land on the rim of a crater, Malapart A, that is believed to have a permanently shadowed interior.

Odysseus however has no instruments capable of seeing into that interior. Its main mission is engineering, to test the landing technology of Intuitive Machines’ spacecraft. As part of this effort, it will release a small camera probe, dubbed EagleCam, when it is about 100 feet above the surface, which will to take images of that landing. [Update: That probe is unprecedented for another reason: It will be first student-built probe to land on another world, as it was designed and built by a team of students at Embry-Riddle Aeronautical University in Florida.]

If the landing is successful, Odysseus is designed to last until sunset on the Moon, about another two weeks. It carries a variety of NASA and commercial payloads, including a private small optical telescope. More important, it will allow the company to follow through with its manifest of future missions, including a second lunar landing later this year.
» Read more

Tomorrow’s landing of Intuitive Machine’s Odysseus lunar lander

South Pole of Moon with landing sites
Nova-C is Odysseus’s landing spot

NASA has now announced its planned live stream coverage of tomorrow’s landing attempt of Intuitive Machine’s Odysseus lunar lander near the south pole of the Moon.

Intuitive Machines is targeting no earlier than 5:49 p.m. EST Thursday, Feb. 22, to land their Odysseus lunar lander near Malapert A in the South Pole region of the Moon.

Live landing coverage will air on NASA+, NASA Television, the NASA app, and the agency’s website. NASA TV can be streamed on a variety of platforms, including social media. Coverage will include live streaming and blog updates beginning 4:15 p.m., as the landing milestones occur. Upon successful landing, Intuitive Machines and NASA will host a news conference to discuss the mission and science opportunities that lie ahead as the company begins lunar surface operations.

No live stream is of course active yet. When it goes live tomorrow afternoon I will embed the youtube broadcast here on Behind the Black.

If successful, Odysseus will be the first American landing on the Moon since the manned Apollo missions more than a half century ago. It will also mark the first successful lunar landing achieved by a privately-built spacecraft. Companies from Israel, Japan, and the U.S. have already tried and failed.

SpaceX successfully launches Intuitive Machines Odysseus lunar lander

South Pole of Moon with landing sites

SpaceX has successfully launched Intuitive Machines commercial Nova-C-class Odysseus lunar lander, its Falcon 9 rocket lifting off from Cape Canaveral at 1:05 am (Eastern) on February 15th.

This was the third launch in less than eleven hours today, and the second launch by SpaceX. The first stage successfully completed its 18th flight, landing back at Cape Canaveral.

The green dot on the map to the right shows the planned landing site for Odysseus, next to a crater with a permanently shadowed interior, though it will have no way to travel into it. This will also be the closest landing to the Moon’s south pole, and if all goes well, will take place eight days from today, where it will operate for about ten Earth days. You can find out more about the lander’s payloads and mission from the press kit [pdf].

It must be emphasized that like India’s Vikram lander and Pragyan rover, Japan’s SLIM lander, and Astrobotic’s Peregrine lander, Odysseus is mostly an engineering test to prove out the landing systems. If this spacecraft does any science on the lunar surface that will be a bonus.

The leaders in the 2024 launch race:

14 SpaceX
8 China
2 Iran
2 Russia

American private enterprise now leads the entire world combined 16 to 14 in successful launches, with SpaceX by itself is now tied the rest of the world combined (excluding American companies) 14 to 14.