2,000-year-old wine found in Roman tomb

According to tests done on a liquid found in an urn in a Roman tomb discovered in Spain in 2019, that liquid is an ancient white wine that likely came from that region.

As part of that ritual, the skeletal remains of one of the men were immersed in a liquid inside a glass funerary urn. This liquid, which over time has acquired a reddish hue, has been preserved since the first century AD, and a team with the Department of Organic Chemistry at the University of Cordoba, led by Professor José Rafael Ruiz Arrebola, in collaboration with the City of Carmona, has identified it as the oldest wine ever discovered, thus topping the Speyer wine bottle discovered in 1867 and dated to the fourth century AD, preserved in the Historical Museum of Pfalz (Germany).

It is unclear from the report whether anyone has actually tasted the wine, which even if drinkable is tainted by the bones and the cremated ashes of that one individual.

Astronomers see a quiet galaxy become active for the first time

Using a number of space- and ground-based telescopes, astronomers have for the first time seen in real time what had previously been a very inactive and quiet galaxy become active and energetic, suggesting a major event at the galaxy’s center had taken place to change its behavior.

From the abstract of the paper [pdf]:

We conclude that the variations observed in SDSS1335+0728 could be either explained by a ∼ 10 6 M ⊙ AGN [a one million solar mass black hole] that is just turning on or by an exotic tidal disruption event (TDE). If the former is true, SDSS1335+0728 is one of the strongest cases of an AGN observed in the process of activating. If the latter were found to be the case, it would correspond to the longest and faintest TDE ever observed (or another class of still unknown nuclear transient). Future observations of SDSS1335+0728 are crucial to further understand its behaviour.

As noted in the press release:

Some phenomena, like supernova explosions or tidal disruption events — when a star gets too close to a black hole and is torn apart — can make galaxies suddenly light up. But these brightness variations typically last only a few dozen or, at most, a few hundreds of days. SDSS1335+0728 is still growing brighter today, more than four years after it was first seen to ‘switch on’. Moreover, the variations detected in the galaxy, which is located 300 million light-years away in the constellation Virgo, are unlike any seen before.

If the central black hole is switching from being quiet to active, this galaxy is providing astronomers critical information for understanding such changes. This is particularly important to us here in the Milky Way, which has a very inactive central supermassive black hole weighing about 4 million solar masses. It would be very useful to understand what would cause it to become active, especially because such an event might even have an impact — possibly negative — throughout our entire galaxy.

Scientists release first image from Hubble in one-gyro mode

First Hubble image in one-gyro mode
Click for original image.

The Hubble science team today released the first image from the Hubble Space Telescope produced in its new one-gyro mode.

That image it so the right, cropped, reduced, and sharpened to post here, and shows NGC 1546, a nearby galaxy in the constellation Dorado about 52 million light years away. The inset shows at full resolution the small red galaxy near the top, to give some sense of the telescope’s capabilities in this one-gyro mode.

The details astonish me, and prove my pessimism about this new mode to have been wrong. I expected future images to be more fuzzy, with Hubble’s ability to take sharp images largely limited. The resolution here is excellent, and bodes well for future science observations.

Nonetheless, the telescope is still working under major limitations:

Although one-gyro mode is an excellent way to keep Hubble science operations going, it does have limitations, which include a small decrease in efficiency (roughly 12 percent) due to the added time required to slew and lock the telescope onto a science target.

As previously noted, prior to the use of the fine guidance sensors, fixed head star trackers position Hubble’s pointing closer to the target. If Earth or the moon block two of the fixed head star trackers’ fields of view, Hubble must move further along in its orbit until the star trackers can see the sky and its stars again. This process encroaches upon science observation time. Second, the additional time the fine guidance sensors take to further search for the guide stars adds to the total time the sensors use to complete the acquisition.

Third, in one-gyro mode Hubble has some restrictions on the science it can do. For example, Hubble cannot track moving objects that are closer to Earth than the orbit of Mars. Their motion is too fast to track without the full complement of gyros. Additionally, the reduced area of sky that Hubble can point to at any given time also reduces its flexibility to see transient events or targets of opportunity like an exploding star or an impact on Jupiter.

When combined, these factors may yield a decrease in productivity of roughly 20 to 25 percent from the typical observing program conducted in the past using all three gyros.

It really is time for the astronomical community to get its act together and begin work on developing and launching more large optical telescopes into space. Hubble has shown us the potential of in-space optical astronomy. That astronomers have not flocked in the last three decades to build more such telescopes is puzzling beyond belief.

Massive Martian landslides

Massive Martian landslides
For original images go here and here.

Overview map

Today’s two cool images above provide a nice sense of the massive nature of many Martian landslides. Scientists often call this kind of slide “mass wasting,” because rather than it occurring because a single rock propagates a larger flow of rocks as it starts rolling downhill, this slide occurs because a large section of the hillside suddenly breaks free and moves downward as a unit, carving a path as it goes.

Mars has a lot of these kinds of slides, likely caused partly by its lower gravity, 39% that of Earth’s.

The overview map to the right marks the location of both slides by their numbers. Number one took place on the eastern interior rim of a 56-mile-wide and 7,000-foot-deep unnamed crater the dry tropics of Mars. The slide dropped about 3,000 feet, beginning about halfway down from the top of the rim and not quite reaching the crater floor. The picture was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on March 31, 2024.

Number two occurred on the western interior rim of a 32-mile-wide and 6,500-foot-deep unnamed crater in the mid-latitudes where near-surface ice and glacial features are often found. In this case the slide fell downward about 3,500 feet. The picture was taken by MRO’s high resolution camera on March 14, 2024.

Despite the different latitudes and thus different climates and geological settings, both landslides look similar. It is possible they occurred under similar conditions, but at very different times. Or it is also possible that the Mars gravity and general environment promotes these mass wasting events everywhere.

Surprise! Scientists discover that eating cheese makes you happier in old age!

Science discovers the obvious: A computer analysis of 2.3 million people in Europe has found that eating cheese helped make them healthier and happier as they aged.

A mediation analysis identified 33 factors that mediate “between the well-being spectrum and the aging-GIP” – essentially, statistically, the disease, behaviors and lifestyle choices that significantly reduce the healthy aging score. Key ones included TV watching, smoking, medication use, heart failure, attention-deficit hyperactivity disorder (ADHD), stroke, coronary atherosclerosis and ischemic heart disease.

Cheese, on the other hand, swung the pendulum the other way in both its impact on the well-being spectrum and aging-GIP. One of five key lifestyle mediators the data testing identified, it had a 3.67% positive impact on those healthy aging factors (whereas, for example, higher fruit intake had a 1.96% positive result and too much TV time, an indication of a more sedentary lifestyle, had a 7.39% negative impact on the score for both indicators).

While interesting, this research is generally junk. The number of uncertainties and assumptions are so large that no one should take any of these positive and negative scores very seriously. Furthermore, the study basically discovers something that is patently obvious from the beginning: If you are active and eat well, you will be healthier in old age. If you are a couch potato who smokes, you will likely be sicker in old age.

Why cheese (and fruit) should improve these scores is intriguing, but simply suggests that the study is not very useful. The intriguing (and amusing) nature of these results guarantees however that it will blasted by every mainstream news source in the coming days, with little mention of the weakness of the research.

Once again, the first known binary of two supermassive black holes flares as predicted

The predicted orbit of OJ287

Using a variety of space telescopes astronomers have successfully predicted and then observed a major flare that occurred on November 12, 2021 from OJ287, the first known binary of two supermassive black holes located 3.5 billion light years away at the center of a very active galaxy dubbed a blazar.

On Nov. 12, 2021, TESS detected OJ 287 brightening by about two magnitudes for about 12 hours, as it released as much energy in that short burst as 100 average galaxies would release in the same time. This flare was attributed to a jet from the second black hole; observations from the other telescopes supported that result as well, with Fermi in particular detecting a significant outburst of gamma rays.

The figure to the right comes from the published paper [pdf], and shows the orbit of the smaller supermassive black hole — weighing 150 million solar masses — as it circled the larger central supermassive black hole — weighing 18 billion solar masses — from 2000 to 2021.

This was not the first time such a flare from OJ287 had been predicted and observed. Astronomers also did it in 2019. These observations now strongly confirm the predicted orbit of the small black hole, as shown in the figure.

The insane mountain slopes of Mars’ deep canyons

Overview map

The insane mountain slopes of Mars' deep canyons
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on April 25, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The scientists label this layered deposits, but that hardly describes what we are looking at. This slope, as shown in the overview map above, is the north flank of the central ridgeline inside the giant enclosed canyon depression dubbed Hebes Chasma, located just north of the main canyon of Valles Marineris, the largest known canyon in the solar system.

From floor to peak the ridge is around 16,000 feet high. Yet, its peak sits more than 6,000 feet below the plateau that surrounds Hebes. In this one picture the drop from high to low is only 5,700 feet, with thousands of feet of cliff unseen below and above.

Yet every single foot of these gigantic cliffs is layered. Based on close-up data obtained by Curiosity on the slopes of Mount Sharp in Gale Crater on the other side of the planet, the layers we can see here only represent the most coarse sedimentary boundaries. Within these layers are likely thousands upon thousands of thin additional layers, each likely representing some cyclical climate proces on Mars, even down to individual years.

Note too that the lower slopes in this picture (near the top) suggest some form of erosion flowing downhill. What caused that erosion process however remains unknown. It could have been liquid water, or glaciers, or some other process unique to Mars that we still haven’t uncovered.

Lunar Reconnaissance Orbiter snaps picture of Chang’e-6 on far side of the Moon

Chang'e-6's landing site
Click for original image of Chang’e-6 on the Moon

The science team running Lunar Reconnaissance Orbiter (LRO) have now released an image of China’s Chang’e-6 lander on far side of the Moon, taken on June 7, 2024 one week after the spacecraft touched down.

Chang’e 6 landed on 1 June, 2024, and when LRO passed over the landing site almost a week later, it acquired an image showing the Chang’e 6 lander on the rim of an eroded ~50 meter diameter crater.

The LROC team computed the landing site coordinates as 41.6385°S, 206.0148°E, at -5256 meters elevation relative to the average lunar surface, with an estimated horizontal accuracy of plus-or-minus 30 meters.

The overview map to the right, showing the entire far side of the Moon, shows that picture as the inset in the lower left, cropped to post here. The black and white dot in the center is Chang’e-6’s lander, with the surrounding brightened ground showing the blast area produced by the engines during touchdown.

According to the LRO press release, the large dark area that surrounds the lander — as seen in the wider inset in the upper right — is a “basaltic mare deposit” — similar to the vast dark frozen lava seas evident to our own eyes on the near side of the Moon.

Webb produces false color infrared image of the Crab Nebula

The Crab Nebula as in infrared by Webb
Click for original image.

The false-color infrared picture to the right, reduced and sharpened to post here, was taken by the Webb Space Telescope of the Crab Nebula, located 6,500 light years away and created when a star went supernova in 1054 AD, in order to better understand its make-up and origins. From the caption:

The supernova remnant is comprised of several different components, including doubly ionized sulfur (represented in green), warm dust (magenta), and synchrotron emission (blue). Yellow-white mottled filaments within the Crab’s interior represent areas where dust and doubly ionized sulfur coincide.

The spectroscopic data from this infrared observation has in fact increased the puzzle of the Crab’s origin. Previously the data suggested the supernova that caused it was one type of supernova. This data now suggests it could have been a different type, without precluding the possibility of the first.

“Now the Webb data widen the possible interpretations,” said Tea Temim, lead author of the study at Princeton University in New Jersey. “The composition of the gas no longer requires an electron-capture explosion, but could also be explained by a weak iron core-collapse supernova.”

You can read the published science paper here [pdf].

Archaeologists discover 35 glass jars at Mount Vernon from 1700s, most containing edible preserved fruits

During an on-going renovation at George Washington’s Mount Vernon home, archaeologists have discovered 35 glass jars from the 1700s, with most containing preserved cherries and berries that appear completely edible.

Of the 35 bottles, 29 are intact and contain perfectly preserved cherries and berries, likely gooseberries or currants. The contents of each bottle have been carefully extracted, are under refrigeration at Mount Vernon, and will undergo scientific analysis. The bottles are slowly drying in the Mount Vernon archaeology lab and will be sent off-site for conservation.

Only a small quantity of the preserved fruits has been analyzed, with the following results:

  • 54 cherry pits and 23 stems have been identified thus far, suggesting that the bottles were likely full of cherries before bottling. Cherry pulp is also present.
  • Microscopy suggests that the cherries may have been harvested by snipping from trees with shears. The stems were neatly cut and purposefully left attached to the fruit before bottling.
  • The cherries likely are of a tart variety, which has a more acidic composition that may have aided in preservation.
  • The cherries are likely candidates for DNA extraction, which could be compared against a database of heirloom varieties to determine the precise species.
  • The pits are undergoing an examination to determine if any are viable for germination.

The last point is most fascinating. Imagine if a new cherry tree could be grown from a pit that was likely picked when George Washington was alive.

Perseverance looks back at downstream Neretva Vallis

Perseverance looks backwards
Click for full resolution version. Highly recommended!

Cool image time! The panorama above was released today by the science team of the Mars rover Perseverance, created from 56 pictures taken by the rover’s high resolution camera. It looks east, downstream into Neretva Vallis, what is believed to be the ancient riverbed that produced the delta that now exists inside Jezero Crater.

The yellow lines in the overview map below indicate the approximate area shown by the panorama. The blue dot marks where Perseverance was located when it took these pictures on May 17, 2024.

Make sure you look at the full resolution image. Neretva Vallis, the depression in the center of the panorama, is about a quarter-mile wide. The green dot on the map marks Ingenuity’s final landing spot. Though the helicopter is somewhere inside that panorama, it does not appear to be visible as it lies on the far side of one of those dunes.

It is also possible that Ingenuity is visible, but is only a tiny dark dot that makes it hard to identify. In reviewing the high resolution image closely, there is one dot that could be Ingenuity.

Overview map
Click for interactive map.

Study: Dust removal at Jezero 9x greater than InSight landing area

Figure 2 from the paper
Figure 2 from the paper. Click for original.

Using data from the Mars rover Perseverance, scientists have concluded that dust removal rate in Jezero crater is almost ten times greater than where InSight landed in western Elysium Planitia.

The graph, figure 2 from their paper, illustrates that differents starkly. From their abstract:

Dust removal is almost 10 times larger than at InSight’s location: projections indicate that surfaces at Jezero will be periodically partially cleaned. The estimations of the effect of the accumulated dust as a function of time are encouraging for solar-powered missions to regions with similar amounts of dust lifting, which might be determined from orbital data on where dust storms originate, dust devils or their tracks are found, or seasonal albedo changes are noted.

In other words, it might be practical to send solar powered rovers to different places on Mars, if first research was done to see if the conditions there would regularly clear dust from those panels.

This research confirms what had been implied by the different experiences of landers/rovers in different places on Mars. InSight landed near the equator in a region south of the giant shield volcano Elysium Mons. It only survived four years, with steadily lower energy levels, because no wind or dust devil ever cleared the accumulating dust on its solar panels. Spirit meanwhile landed about 1,500 miles southwest of InSight, yet its power levels were still healthy after more than five years of operations, when those operations ended because the rover could no longer move. The rover Opportunity meanwhile on the other side of the planet lasted more than fourteen years. Both rovers relied on solar power, like InSight, but their solar panels kept getting cleared of dust by wind and dust devils.

It is unclear if this wind research has been done for Europe’s Franklin rover, presently scheduled to land in Oxia Planum in 2028. Franklin will rely on solar panels, and though its nominal mission on the surface is only supposed to last seven months, it is always assumed it will continue until the rover fails.

Perseverance looks up at the rim of Jezero Crater

Panorama on June 10, 2024 by Perseverance
Click for full resolution. For original images, go here, here, here, and here.

Overview map
Click for interactive map.

Cool image time. The panorama above was created from four pictures taken on June 10, 2024 by the left navigation camera on the Mars rover Perseverance (captions found here, here, here, and here). It looks north at the nearest hill that forms the north part of the rim of Jezero Crater.

The overview map to the right provides context. The blue dot marks Perseverance’s present location, when it took these pictures. The yellow lines indicate the approximate area covered by the panorama. The red dotted line marks the rover’s planned route, while the white dotted line the route it has actually taken.

Because the rover is now at the base of this hill, it can no longer see the top of the crater’s rim. What it sees instead is the barren foothills of that rim, covered with dust, dunes, and many broken rocks.

As I have noted numerous times, the utter lack of life marks this as a truly alien landscape, compared to Earth. Nowhere on our home planet would you see terrain this empty of life. While NASA likes to claim that Perseverance’s main mission is the search for life on Mars, that claim is always a lie. It is very unlikely any life is going to be found here by Perseverance, and if that was its true scientific purpose it would never have been built nor launched.

What the scientists are doing is studying the alien geology of Mars, to try to understand how this utterly alien planet got to be the way it is now. Such knowledge is critical for the future explorers of space, as it will make it easier for them to understand the alien landscapes they will find elsewhere, within the solar system and eventually in other solar systems far beyond.

Curiosity sees evidence of solar storm hitting Mars

Charged particles from solar storm
Click to see original three-frame movie.

Cool image time! The picture to the right is a screen capture from a three-frame movie created from photos taken by one of the navigation cameras on the Mars rover Curiosity. The white streak and other smaller streaks were created by charged particles hitting the camera’s CCD detector on May 20, 2024, from a solar storm caused by the strong solar flares presently being pumped out by the Sun.

The mission regularly captures videos to try and catch dust devils, or dust-bearing whirlwinds. While none were spotted in this particular sequence of images, engineers did see streaks and specks – visual artifacts created when charged particles from the Sun hit the camera’s image detector. The particles do not damage the detector.

The images in this sequence appear grainy because navigation-camera images are processed to highlight changes in the landscape from frame to frame. When there isn’t much change — in this case, the rover was parked — more noise appears in the image.

Curiosity’s Radiation Assessment Detector (RAD) measured a sharp increase in radiation at this time – the biggest radiation surge the mission has seen since landing in 2012.

The view of this picture is to the south, looking towards the top of Mount Sharp, though that peak, more than 25 miles away, is not visible because the mountain’s lower flanks are in the way. A second movie showing similar charged particle streaks was taken looking south, with the rim of Gale Crater barely visible 20-30 miles away.

The gullies on Mars are caused by a variety of factors, linked to both water and carbon dioxide

The global distribution of gullies on Mars
Click for original image.

In doing a detailed global analysis of all the known gullies on Mars, scientists now believe the gullies are formed by a variety of factors, linked to both water and carbon dioxide as well as the planet’s radically changing rotational tilt — varying from 11 to 60 degrees — over time.

Noblet’s paper articulates a “hierarchy of factors” that describes where gullies occur, with well-supported explanations as to why they form in one place and not another. None of the explanations in this paper are new. What’s new is how Noblet and coworkers reconcile apparent contradictions and inconsistencies among other researchers’ explanations of gully formation, explaining why an explanation that works for one spot on Mars doesn’t work in another.

The map above, from their paper, shows the global distribution of the gullies, which appear to favor the same mid-latitudes where the planet’s glaciers are mostly found. The data from many different studies suggests that when the planet’s rotational tilt was high, these mid-latitudes regions were warmer, and the near-surface ice there would sublimate away to get redeposited at the poles. When this happened the sublimation would cause the pole-facing gullies to form.

The paper also suggests that any gullies changing today are likely the result of the sublimation of carbon dioxide, not water.

There is a lot more at the article at the link, which is an excellent summation of this research.

Research suggests a Mars mission will permanently damage a person’s kidneys

New research now suggests strongly that the exposure to cosmic rays during a three-year-long mission to Mars would cause permanent damage to a person’s kidneys.

The results indicated that both human and animal kidneys are ‘remodelled’ by the conditions in space, with specific kidney tubules responsible for fine tuning calcium and salt balance showing signs of shrinkage after less than a month in space. Researchers say the likely cause of this is microgravity rather than GCR [galactic cosmic rays], though further research is required to determine if the interaction of microgravity and GCR can accelerate or worsen these structural changes.

The primary reason that kidney stones develop during space missions had previously been assumed to be solely due to microgravity-induced bone loss that leads to a build-up of calcium in the urine. Rather, the UCL team’s findings indicated that the way the kidneys process salts is fundamentally altered by space flight and likely a primary contributor to kidney stone formation.

Perhaps the most alarming finding, at least for any astronaut considering a three-year round trip to Mars, is that the kidneys of mice exposed to radiation simulating GCR for 2.5 years experienced permanent damage and loss of function. [emphasis mine]

The study used samples “from over 40 Low Earth orbit space missions involving humans and mice, most of which were to the International Space Station, as well as 11 space simulations involving mice and rats.”

If these results are confirmed, it means that any interplanetary spaceship is going to require significant shielding. Having a safe haven they can go to during high energy solar events will not work, as cosmic rays arrive randomly at all times. This research thus tells us that we can’t simply add engines to the space station designs presently being built to send them to Mars. Instead, we need a heavy-lifte capability (such as Starship) to get the much heavier, well-shielded habitable modules into orbit.

Ed Stone, who ran the Voyager missions for a half century, passes away at 88

Ed Stone, who was the project scientist for both Voyager missions to the outer solar system and beyond for a half century, passed away at 88 on June 9, 2024.

From 1972 until his retirement in 2022, Stone served as the project scientist from NASA’s longest-running mission, Voyager. The two Voyager probes took advantage of a celestial alignment that occurs just once every 176 years to visit Jupiter, Saturn, Uranus, and Neptune. During their journeys, the spacecraft revealed the first active volcanoes beyond Earth on Jupiter’s moon Io, and an atmosphere rich with organic molecules on Saturn’s moon Titan. Voyager 2 remains the only spacecraft to fly by Uranus and Neptune, revealing Uranus’ unusual tipped magnetic poles, and the icy geysers erupting from Neptune’s moon Triton.

Stone was also head of JPL from 1991 to 2001, during the time it built and flew the Mars Pathfinder mission, which sent the first rover to Red Planet. That mission revitalized the entire American Mars exploration program for the next three decades.

Stone was one of the giants of American space exploration during its formative years. He leaves behind a legacy that will be difficult to match, highlighted most of all by both Voyager spacecraft, which outlived him.

Evidence of giant asteroid collision in debris disk surrounding the star Beta Pictoris

Data difference between Spitzer and Webb
Click for original figure.

Scientists comparing infrared data collected twenty years apart — first by the Spitzer Space Telescope and then by the Webb Space Telescope — think they have detected evidence of a gigantic asteroid collision in the debris disk that surrounds the very young star Beta Pictoris, located 63 light years away.

The graph to the right shows the change found between the observations. From the caption:

Scientists theorize that the massive amount of dust seen in the 2004–05 image from the Spitzer Space Telescope indicates a collision of asteroids that had largely cleared by the time the James Webb Space Telescope captured its images in 2023.

…When Spitzer collected the earlier data, scientists assumed something like small bodies grinding down would stir and replenish the dust steadily over time. But Webb’s new observations show the dust disappeared and was not replaced. The amount of dust kicked up is about 100,000 times the size of the asteroid that killed the dinosaurs, Chen said.

It is believed by scientists that the debris disk that surrounds Beta Pictoris is comparable to the early solar system when the planets first started to form. This collision could be similar to the kind of collision that is thought to have formed the Moon, when a large Mars-sized object smashed into the early Earth.

Scientists: Water frost detected in calderas of four Martian volcanos

Frost found on four Martian volcanoes

Scientists using data from two European Mars orbiters think they have detected patches of transient water frost in the calderas of four Martian volcanos, all located in the dry equatorial regions of Mars where previously no near-surface ice has been seen.

According to the study, the frost is present for only a few hours after sunrise before it evaporates in sunlight. The frost is also incredibly thin — likely only one-hundredth of a millimeter thick or about the width of a human hair. Still, it’s quite vast. The researchers calculate the frost constitutes at least 150,000 tons of water that swaps between the surface and atmosphere each day during the cold seasons. That’s the equivalent of roughly 60 Olympic-size swimming pools.

You can read the research paper here. The volcanoes with frost were Olympus Mons, Arsia Mons, Ascraeus Mons, and Ceraunius Tholus, as shown by the blue dots on the overview map to the right. All are in the dry tropics of Mars.

The researchers believe the frost comes from the atmosphere, like dew forming in the morning on Earth. For it to take place at these high elevations on Mars however is astonishing. At these high elevations the atmosphere is extremely thin. Furthermore, the dry tropics have so far been found to contain no near-surface water or ice to fuel these processes.

A close-up of rocks on Mars

Curiosity's robot arm about to take a close look at the ground
Click for original image.

Close-up of rocks on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on June 6, 2024 by Curiosity’s Mars Hand Lens Imager (MAHLI), located at the end of the rover’s robot arm and designed to get close-up high resolution images of the ground that the arm is exploring.

The picture above, taken just after the one to the right and cropped, reduced, sharpened, and annotated to post here, shows the robot arm shortly after it has rotated upward after placing MAHLI right up against the ground. Note the tread marks. The science team apparently chose these target rocks because they were likely ground somewhat as the rover rolled over them, breaking the rocks to expose new faces.

According to the scientists, the camera was about two to three inches away from these rocks when it snapped the picture, with the scale about 16 to 25 microns per pixel. Since a micron is one millionth of a meter, this picture is showing us some very small details within a much larger rock.

I post this because I have rarely seen such colorful and crystal-like surface features from Curiosity.

Webb detects carbon in early galaxy, far earlier than expected

The uncertainty of science: Astronomers using the Webb Space Telescope have detected evidence of carbon in a galaxy estimated to exist only 350 million years after the Big Bang, much sooner than any theory had predicted such an element could have developed.

“We were surprised to see carbon so early in the universe, since it was thought that the earliest stars produced much more oxygen than carbon,” said Maiolino. “We had thought that carbon was enriched much later, through entirely different processes, but the fact that it appears so early tells us that the very first stars may have operated very differently.”

According to some models, when the earliest stars exploded as supernovas, they may have released less energy than initially expected. In this case, carbon, which was in the stars’ outer shell and less gravitationally bound than oxygen, could have escaped more easily and spread throughout the galaxy, while a large amount of oxygen fell back and collapsed into a black hole.

The paper is available here.

The scientists are struggling to explain this result in the context of the Big Bang theory itself, and have come up with scenarios where it will work. However, the fact that Webb has found another data point suggesting the early universe was more complicated than any model predicted increases the difficulty in producing Big Bang models that will work.

All in all, there remains great uncertainty here. This particular observation required 65 hours of observation time. Pulling real data from these very distant points of light remains quite challenging.

Telescope removed from Mauna Kea on Big Island as local Hawaiian council rejects new telescopes on Haleakala on Maui

Even as a local Hawaiian authority on the Big Island has completed the removal of the first of three telescopes on the top of Mauna Kea, a local council on the island of Maui have voted 9-0 to oppose an Air Force project to build new telescopes on top of Haleakala.

The proposed new facility is called AMOS STAR, which is an acronym for Air Force Maui Optical and Supercomputing Site Small Telescope Advanced Research. It would feature six telescopes enclosed in ground-mounted domes and one rooftop-mounted domed telescope.

The county’s resolution urged the military to heed community calls to cease their development efforts. It urged the National Park Service, Federal Aviation Administration and the Hawaii Department of Land and Natural Resources to deny the project permits.

At this time it appears that Hawaiians desended from the original indigenous population are opposed to all western technology, even as they rely on it. These new telescopes are proposed by the Air Force because it needs better capilities to track the tens of thousands of new satellites being launched by numerous companies and governments. This information will help prevent collisions in space.

As for their claims that these peaks are “considered wao akua, or ‘realm of the gods,’ and [places] of deep spirituality for Native Hawaiians to engage in some of these traditional practices,” as stated in the council’s resolution, I have some doubts. For almost three-quarters of a century such religious concerns and objections were never mentioned by anyone. If they existed indigenous Hawaiians appeared to have no problem “engaging in traditional practices” right next to telescopes. Only when some activists appeared in the past decade, looking to insert themselves in the process (thus obtaining positions of power and money) did the peaks become so important religiously.

Lunar samples transferred to Chang’e-6 return vehicle

According to China’s state-run press, the ascent vehicle has docked with the Chang’e-6 orbiter and successfully transferred its lunar samples to the return spacecraft that will bring those samples back to Earth.

The ascender of China’s Chang’e-6 probe successfully rendezvoused and docked with the probe’s orbiter-returner combination in lunar orbit at 2:48 p.m. (Beijing Time) on Thursday, the China National Space Administration (CNSA) announced.

The container carrying the world’s first samples from the far side of the moon had been transferred from the ascender to the returner safely by 3:24 p.m., the CNSA said.

That return is scheduled for later this month. In the meantime the orbiter will adjust its position in preparation for sending the return capsule back.

Hubble goes to one-gyro mode, limiting the telescope’s observational capabilities; NASA rejects private repair mission

Story Musgrave on the shuttle robot arm during the last spacewalk of the 1993 Hubble repair mission
Story Musgrave on the shuttle robot arm during
the last spacewalk of the 1993 Hubble repair mission

After the third safe mode event in six months, all caused by issues with the same gyroscope, engineers have decided to shift the Hubble Space Telescope to what they call one-gyro mode, whereby the telescope is pointed using only one gyroscope, and the remaining working gyro is kept in reserve.

The spacecraft had six new gyros installed during the fifth and final space shuttle servicing mission in 2009. To date, three of those gyros remain operational, including the gyro currently experiencing problems, which the team will continue to monitor. Hubble uses three gyros to maximize efficiency but can continue to make science observations with only one gyro. NASA first developed this plan more than 20 years ago, as the best operational mode to prolong Hubble’s life and allow it to successfully provide consistent science with fewer than three working gyros. Hubble previously operated in two-gyro mode, which is negligibly different from one-gyro mode, from 2005-2009. One-gyro operations were demonstrated in 2008 for a short time with no impact to science observation quality.

While continuing to make science observations in one-gyro mode, there are some expected minor limitations. The observatory will need more time to slew and lock onto a science target and won’t have as much flexibility as to where it can observe at any given time. It also will not be able to track moving objects closer than Mars, though these are rare targets for Hubble.

This NASA press release is carefully spun to hide the simple fact that in one-gyro mode, the telescope will simply not be able to take sharp pictures. » Read more

Chang’e-6 ascender carrying lunar samples lifts off Moon

Chang'e-6's robot arm grabbing ground samples
Chang’e-6’s robot arm grabbing ground samples.
Image is a screen capture from mission control
main screen. Click for original.

Early today the ascender of China’s Chang’e-6 lunar probe lifted off the surface on the Moon’s far side, carrying the samples it had obtained both by drilling and the use of a robot arm.

The ascender took off at 7:38 a.m. (Beijing Time) from the moon’s far side. A 3,000-newton engine, after working for about six minutes, pushed the ascender to the preset lunar orbit, according to the CNSA.

The Chang’e-6 probe, comprising an orbiter, a lander, an ascender and a returner — like its predecessor Chang’e-5 — was launched on May 3. The lander-ascender combination, separated from the orbiter-returner combination on May 30, touched down at the designated landing area in the South Pole-Aitken (SPA) Basin on June 2.

The spacecraft finished its intelligent and rapid sampling work, and the samples were stowed in a container inside the ascender of the probe as planned, the CNSA said.

At some point, not yet specified, the ascender will dock with the orbiter-returner and transfer the samples to the returner, which after a period in orbit awaiting the right moment will then separate and head back to Earth.

Sunspot update: In May the Sun went boom!

As I have done at the start of every month since I begun this webpage back in 2010, I am posting NOAA’smonthly update of its graph tracking the number of sunspots on the Sun’s Earth-facing hemisphere, adding to it several additional details to provide some larger context.

While April had showed only a small uptick in sunspot activity, in May the sunspot activity on the Sun went boom, setting a new high for sunspots during this solar maximum as well as the highest sunspot count since September 2002. The sunspot count of 171.7 smashed the previous high of 160 this cycle, set in June 2023. This new high underlined was by the large solar flare on May 9th that sent the most powerful geomagnetic storm to hit the Earth’s magnetic field in many decades, producing spectacular auroras in many low latitudes.
» Read more

China releases movie taken by Chang’e-6 during its lunar descent

Chang'e-6 landing zone
Chang’e-6’s landing zone is indicated by the
red box, on the edge of Apollo Creater
(indicated by the wavy circle).

China’s state-run press yesterday released a short movie created from images taken by its Chang’e-6 lander during its descent to the lunar surface on the far side of the Moon this past weekend.

I have embedded that footage below. The final five frames however are very puzzling, in that they do not appear to show a smooth descent to a specific spot, but appear to jump about wildly. Moreover, the footage does not appear to show the actual landing itself, but appears to stop while the spacecraft is still above the ground.

It is possible that this footage is simply showing the spacecraft’s software searching for a good landing spot, combined with a decision in China not to release footage of the actual touchdown. It could also be that something has gone wrong, and they are stalling about saying so. This last possibility I think very unlikely, but it must be considered, based on the information available.
» Read more

Chang’e-6’s lander successfully soft lands on far side of the Moon

Chang'e-6 landing zone
Chang’e-6’s landing zone is indicated by the
red box, on the edge of Apollo Creater
(indicated by the wavy circle).

China today announced that today at 6:23 pm (Eastern) the lander of its Chang’e-6’s lunar orbiter successfully soft landed on far side of the Moon.

Teams will now begin initial checks of the lander’s systems and soon begin collecting samples. The lander will collect up to 2,000 grams of samples, using a scoop to grab surface regolith and a drill for subsurface material. Samples are expected to be sent into lunar orbit within around 48 hours. Chinese space authorities have yet to publish a timeline for the mission and its steps, however.

Once docked to the orbiter, the samples will get transferred to the return spacecraft, which will return to Earth and land in China, in the same manner as was done with its Chang’e-5 sample return mission in 2021. Unlike those earlier samples, which came from the Moon’s near side (where the Apollo and Soviet samples had come from), these new samples will be first obtained from the far side.

Gully erosion in a Martian dune field

Overview map

Gully erosion in a Martian dune field
Click for original image.

Today’s cool image is another example of how little we really understand the geology of Mars. The picture to the right, rotated, cropped, reduced, and enhanced to post here, was taken on February 22, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The focus of the image is the eastern end of a large and very distinct dune field inside 31-mile-wide Matera Crater, as shown by the white rectangle in the overview map above. The field fills an area 10 by 11 miles inside the floor of the crater. On that eastern end is a very pronounced drainage gully dropping downhill about 2,000 feet to the east.

Gullies on Martian slopes, especially on the interior rims of craters, are not unusual. Though their true cause is not yet confirmed, the theories behind their existence all relate to some form of water/ice process, mostly relating to the seasonal freeze-thaw cycle.

This picture was taken in the spring, exactly when seasonal changes might be spotted. In fact, scientists have been taking regular MRO images of this gully since 2007, when it was featured image. From that 2007 caption:
» Read more

Astronomers find another record-setting most distant galaxy

The uncertainty of science: Using the Webb Space Telescope, astonomers have identified another record-setting most distant galaxy, believed to exist only 300 million years after the Big Bang and once again far more massive and developed than expected that early in the universe.

The galaxy was actually one of two very early galaxies identified that lie close to each other on the sky but are not linked in any way.

The two record-breaking galaxies are called JADES-GS-z14-0 and JADES-GS-z14-1, the former being the more distant of the two. In addition to being the new distance record holder, JADES-GS-z14-0 is remarkable for how big and bright it is. “The size of the galaxy clearly proves that most of the light is being produced by large numbers of young stars,” said Eisenstein, a Harvard professor and chair of the astronomy department, “rather than material falling onto a supermassive black hole in the galaxy’s center, which would appear much smaller.”

The combination of the extreme brightness and the fact that young stars are fueling this high luminosity makes JADES-GS-z14-0 the most striking evidence yet found for the rapid formation of large, massive galaxies in the early Universe.

All the early galaxies that Webb has found so far have been far more massive and developed than cosmologists had predicted. The expectation had been that there wouldn’t have been enough time after the Big Bang for such galaxies to develop. Yet they have, suggesting something is not right with our theories about the beginning of the universe.

1 13 14 15 16 17 276