A movie of 14 years of gamma ray observations from space

Link here. I have also embedded the movie below. The movie was made from fourteen years of observations by the Fermi Gamma-Ray Telescope in orbit around the Earth. From the press release:

Gamma rays are the highest-energy form of light. The movie shows the intensity of gamma rays with energies above 200 million electron volts detected by Fermi’s Large Area Telescope (LAT) between August 2008 and August 2022. For comparison, visible light has energies between 2 and 3 electron volts. Brighter colors mark the locations of more intense gamma-ray sources.

“One of the first things to strike your eye in the movie is a source that steadily arcs across the screen. That’s our Sun, whose apparent movement reflects Earth’s yearly orbital motion around it,” said Fermi Deputy Project Scientist Judy Racusin, who narrates a tour of the movie, at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Most of the time, the LAT detects the Sun faintly due to the impact of accelerated particles called cosmic rays – atomic nuclei traveling close to the speed of light. When they strike the Sun’s gas or even the light it emits, gamma rays result. At times, though, the Sun suddenly brightens with powerful eruptions called solar flares, which can briefly make our star one of the sky’s brightest gamma-ray sources.

The movie shows the sky in two different views. The rectangular view shows the entire sky with the center of our galaxy in the middle. This highlights the central plane of the Milky Way, which glows in gamma rays produced from cosmic rays striking interstellar gas and starlight. It’s also flecked with many other sources, including neutron stars and supernova remnants. Above and below this central band, we’re looking out of our galaxy and into the wider universe, peppered with bright, rapidly changing sources.

Most of these are actually distant galaxies, and they’re better seen in a different view centered on our galaxy’s north and south poles. Each of these galaxies, called blazars, hosts a central black hole with a mass of a million or more Suns.

Fermi is essentially mapping the high energy objects of the entire universe.
» Read more

Ingenuity’s most recent flight, the 68th, a mystery

Overview map
Click for interactive map.

UPDATE: See this December 26, 2023 post for more accurate information.

Original post:
————————–
According to a recent update to the flight log of the Mars helicopter Ingenuity, it finally completed its 68th flight on December 15, 2023, not on December 9, 2023 as announced in the flight plan on December 8th.

More significantly, the flight only traveled 1,289 feet (393 meters), not the 2,716 feet (828 meters) intended. The flight was supposed to travel out to the northeast and then return to its take-off point, indicated by the green dot on the map above, completing a “flight test” as well as scouting the ground below. It appears it did not do this, but where the 68th flight actually went and landed has as yet not been released. According to the flight plan, Ingenuity likely landed somewhere in Neretva Vallis to the northeast, as indicated by the green line.

What we do know is that the engineering team knows enough about Ingenuity’s condition to release today the flight plan for the 69th flight, which was actually scheduled to occur yesterday. That flight plan calls for Ingenuity to travel about 2,300 feet to the east-northeast and then return to its take-off point.

Meanwhile, Perseverance (the blue dot) is working its way west back to its planned route, the red dotted line.

A bubbly dwarf galaxy

A bubbly dwarf galaxy
Click for original image.

Cool image time! The picture to the right, cropped and reduced to post here, was released today by the science team of the Hubble Space Telescope, and shows an irregular dwarf galaxy that is about seven million light years away.

Twelve camera filters were combined to produce this image, with light from the mid-ultraviolet through to the red end of the visible spectrum. The red patches are likely interstellar hydrogen molecules that are glowing because they have been excited by the light from hot, energetic stars. The other sparkles on show in this image are a mix of older stars. An array of distant, diverse galaxies appear in the background, captured by Hubble’s sharp view.

The data used in this image were taken by Hubble’s Wide Field Camera 3 and the Advanced Camera for Surveys from 2006 to 2021.

The picture was taken as part of a study of dwarf galaxies, their make-up, and how their mergers eventually create the larger galaxies like the Milky Way.

A land of buttes on Mars

A land of buttes on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on October 4, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Labeled a “terrain sample” by the science team, it was likely shot not as part of any specific research project but to fill a gap in the schedule so as to maintain the camera’s proper temperature. When the camera team has to do this they try to pick targets that are of some interest. Usually they succeed, considering the enormous gaps we presently have of Mars’ geological history.

This picture is no different. It shows a land of buttes and mesas, all ranging from 20 to 200 feet high, surrounded by canyons filled with ripple dunes of Martian dust. If you look at the floor of those canyons closely, you will notice that where there are no ripple dunes the ground is slightly higher and smooth. It is as if that ground was a kind of sandstone that was eroded away by wind into sand, which then formed the dunes.
» Read more

Laser communication tests with Psyche have now included a cat video

Following up on the first tests in mid-November, engineers on December 11, 2023 downloaded a 15-second cat video from the asteroid probe Psyche at a distance of 19 million miles, demonstrating fast download speeds 10 to 100 times faster than the best radio transmissions.

The demo transmitted the 15-second test video via a cutting-edge instrument called a flight laser transceiver. The video signal took 101 seconds to reach Earth, sent at the system’s maximum bit rate of 267 megabits per second (Mbps). Capable of sending and receiving near-infrared signals, the instrument beamed an encoded near-infrared laser to the Hale Telescope at Caltech’s Palomar Observatory in San Diego County, California, where it was downloaded. Each frame from the looping video was then sent “live” to NASA’s Jet Propulsion Laboratory in Southern California, where the video was played in real time.

I have embedded that video below. More details about the information in that video can be found here.
» Read more

The nearest star-forming region, as seen in infrared by Webb

The nearest star-forming region, as seen by Webb
Click for original image.

Time for another cool image on this somewhat quiet Monday. The false-color infrared image to the right, reduced and sharpened to post here, was taken by the Webb Space Telescope, and shows the Rho Ophiuchi star-forming region, the nearest to our solar system at a distance of about 460 light years.

It is a relatively small, quiet stellar nursery, but you’d never know it from Webb’s chaotic close-up. Jets bursting from young stars crisscross the image, impacting the surrounding interstellar gas and lighting up molecular hydrogen, shown in red. Some stars display the telltale shadow of a circumstellar disc, the makings of future planetary systems.

The young stars at the centre of many of these discs are similar in mass to the Sun or smaller. The heftiest in this image is the star S1, which appears amid a glowing cave it is carving out with its stellar winds in the lower half of the image. The lighter-coloured gas surrounding S1 consists of polycyclic aromatic hydrocarbons, a family of carbon-based molecules that are among the most common compounds found in space.

There are two features that are most compelling to me in this image. First, the red hydrogen jet that cuts across the entire right half of the image from top to bottom. At the top you can see how that jet is pushing material before it. Second, we have the cave-like structure surround S1, the central star. The yellowish cloud is almost like a hand cupped around that star.

A galaxy of violence

A galaxy of violence
Click for original image.

Time for another cool image! The picture to the right, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope, and shows a well defined spiral galaxy face-on in optical wavelengths.

This whirling image features a bright spiral galaxy known as MCG-01-24-014, which is located about 275 million light-years from Earth. In addition to being a well-defined spiral galaxy, MCG-01-24-014 has an extremely energetic core, known as an active galactic nucleus (AGN), so it is referred to as an active galaxy. Even more specifically, it is categorised as a Type-2 Seyfert galaxy. Seyfert galaxies host one of the most common subclasses of AGN, alongside quasars. Whilst the precise categorisation of AGNs is nuanced, Seyfert galaxies tend to be relatively nearby ones where the host galaxy remains plainly detectable alongside its central AGN, while quasars are invariably very distant AGNs whose incredible luminosities outshine their host galaxies.

In contrast, the core of our own Milky Way galaxy is very quiet, which is likely a factor in why it was possible for life to form on Earth.

Webb takes another infrared image of Uranus

Uranus as seen in infrared by Webb
Click for original image. Go here for Uranus close-up

Astronomers have used the Webb Space Telescope to take another infrared image of Uranus, following up on earlier observations with Webb in April.

The new false-color infrared picture is to the right, cropped, reduced, and enhanced to post here. Though the close-up of Uranus is in the left corner, the overall view is somewhat wider than the image I highlighted previously, showing many background galaxies and at least one star. The star is the spiked bright object on the left. In false color the galaxies all been given an orange tint, while the blue objects near Uranus are its moons. Because Uranus’s rotational tilt is so extreme, 98 degrees compared to Earth’s 23 degrees, its north pole is presently facing the Sun directly, and is in the center here.

One of the most striking of these is the planet’s seasonal north polar cloud cap. Compared to the Webb image from earlier this year, some details of the cap are easier to see in these newer images. These include the bright, white, inner cap and the dark lane in the bottom of the polar cap, toward the lower latitudes. Several bright storms can also be seen near and below the southern border of the polar cap. The number of these storms, and how frequently and where they appear in Uranus’s atmosphere, might be due to a combination of seasonal and meteorological effects.

The polar cap appears to become more prominent when the planet’s pole begins to point toward the Sun, as it approaches solstice and receives more sunlight. Uranus reaches its next solstice in 2028, and astronomers are eager to watch any possible changes in the structure of these features. Webb will help disentangle the seasonal and meteorological effects that influence Uranus’s storms, which is critical to help astronomers understand the planet’s complex atmosphere.

If you want to see what Uranus looks like to our eyes, check out the Hubble pictures taken in 2014 and 2022. Though fewer features are visible in optical wavelengths, those two images showed long term seasonal changes.

Webb has now revealed some shorter term changes.

Another minor canyon on Mars that would be a world wonder on Earth

Another minor canyon on Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on August 6, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the steep north canyon wall of one small part of the Martian canyon complex dubbed Noctis Labyrinthus

The elevation drop in this picture is about 8,000 feet, but the canyon’s lowest point is several miles further south and another 7,000 feet lower down. What is most intriguing about the geology here is its age. If you look at the full resolution image, you will see that there are scattered small craters on the smooth slopes that resemble sand that gravity and wind is shaping into those long streaks heading downhill.

Those craters, however tell us that these smooth slopes are very old, and have not changed in a long time. Furthermore, though the material appears to look like soft sand, the craters also tell us it long ago hardened into a kind of rock. If wind is shaping this material, it must be a very slow process.

The light areas on the rim as well as the ridge peaks below the rim suggest the presence of geological variety, which fits with other data that says Noctis Labyrinthus has a wide variety of minerals.
» Read more

Perseverance looks at Jezero Crater in high resolution

Perseverance's future route
Click for full image.

The Perseverance science team earlier this week released a mosaic taken by the rover’s high resolution over three days in November, showing the entire 360 degree view of Jezero Crater from where Perservance sat during the month long solar conjunction that month, when communications with Mars was cut off due to the Sun being in the way.

Part of that panorama, significantly reduced, cropped, and enhanced, is posted above, focusing on the western rim of Jezero Crater and the route that Perseverance will likely take in the future. Below is an overview map that indicates by the yellow lines the approximate area covered by this picture. The light blue dot marks Perseverance’s present location, while the dark blue dot marks where it took the mosaic and was also stationed during that solar conjunction. The dotted red line on both images marks the approximate proposed route that the science team is considering for leaving Jezero crater. Instead of going out through Neretva Vallis, they are instead considering heading south to go over the crater’s rim itself.

Ingenuity’s present position is marked by the green dot. This is where it landed after flight 67 on December 2nd. On December 8th the helicopter’s engineering team had released the flight plan for flight 68, scheduling it for December 9th, but as of this date it appears that flight has not occurred. I suspect the delay is because communication between Ingenuity and Perseverance is presently spotty, though the Ingenuity team has released no information.

Overview map
Click for interactive map.

The end of a 400-mile-long Martian escarpment

The end of a 400-mile-long escarpment
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and enhanced to post here, was taken on August 14, 2023 by the high resolution camera on Mars Reconnaissance Orbiter. It shows the cracked top of a enscarpment, with the bottom point to the west about 2,400 feet lower in elevation.

The north-south cracks at the top of the cliff indicate faults. They also suggest that the cliff itself its slowly separating from eastern plateau. North from this point, beyond the edge of this picture, are several places where such a separation has already occurred, with the collapsed cliff leaving a wide pile of landslide debris at the base.

This cliff actually continues north for another 400 miles, suggesting that the ground shifted along this entire distance, with the ground to the east going up and ground to the west going down. Because the cliff is such a distinct and large feature, it has its own name, Claritas Rupes, “rupes” being the Latin word for cliff.
» Read more

In 2023 scientists set a new record for the most papers retracted

According to a report in the science journal Nature published today, in 2023 scientists set a new record for the most papers retracted in a single year and illustrating the steady rise of fake papers in recent years.

The number of retractions issued for research articles in 2023 has passed 10,000 — smashing annual records — as publishers struggle to clean up a slew of sham papers and peer-review fraud. Among large research-producing nations, Saudi Arabia, Pakistan, Russia and China have the highest retraction rates over the past two decades, a Nature analysis has found.

The bulk of 2023’s retractions were from journals owned by Hindawi, a London-based subsidiary of the publisher Wiley. So far this year, Hindawi journals have pulled more than 8,000 articles, citing factors such as “concerns that the peer review process has been compromised” and “systematic manipulation of the publication and peer-review process”, after investigations prompted by internal editors and by research-integrity sleuths who raised questions about incoherent text and irrelevant references in thousands of papers.

Wiley is moving to shut down this Hindawi subsidiary, canceling many of the journals and abandoning the name entirely. Meanwhile, the overall problem continues to grow, and threatens to get worse with the introduction of papers that can be written entirely by the new artificial intelligence software.

Much of this problem is tied to our bankrupt academic system, which judges scientists by the number of papers the publish rather than how they teach in the classroom. Thus, research scientists at universities have no motive to teach well. Instead they focus on getting papers in print, even if they have to fake it.

Stripped screws preventing access to Bennu samples

According to the scientists working to extract the samples from the asteroid Bennu brought back by the OSIRIS-REx sample return capsule, the work has been stymied because of two stripped screws.

Last month, researchers at the Johnson Space Center in Houston, Texas, discovered that two of the 35 screws that fasten the lid of the sample-return canister couldn’t be opened — blocking access to the remainder of the space rock. Curators used tweezers to pull out what they could, but NASA is now making new screwdrivers so it can get into the equipment it flew billions of kilometres across the Solar System to the asteroid Bennu and back.

Because the capsule is kept within a sealed glovebox to prevent the samples from being contaminated by the Earth environment, removing the screws requires NASA to manufacture special screwdrivers that will also not contaminate that environment. This work is what is causing the delay.

Martian crater or mud caldera?

Martian crater or volcano?
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on October 18, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The scientists only call this a “feature,” likely because they don’t wish to guess as to its nature without more data. However, the 2.5 mile wide splash apron around the central double crater certainly merits a closer look. That double crater could be from impact, but it also could be a caldera, with the apron the result of material that flowed from the caldera.

That there appear to be fewer craters on the apron than on the surrounding terrain strengthens this last hypothesis. The apron would have erased many earlier impact craters, resulting in this lower count.

The location however suggests that if this feature was volcanic in origin it might not have been spewing out magma.
» Read more

Voyager-1 has computer issues

According to the Voyager-1 science team, the probe has developed a problem with one of its three onboard computers, called the flight data system (FDS), that is preventing it from sending back useable data.

Among other things, the FDS is designed to collect data from the science instruments as well as engineering data about the health and status of the spacecraft. It then combines that information into a single data “package” to be sent back to Earth by the TMU. The data is in the form of ones and zeros, or binary code. Varying combinations of the two numbers are the basis of all computer language.

Recently, the TMU began transmitting a repeating pattern of ones and zeros as if it were “stuck.” After ruling out other possibilities, the Voyager team determined that the source of the issue is the FDS. This past weekend the team tried to restart the FDS and return it to the state it was in before the issue began, but the spacecraft still isn’t returning useable data.

Engineers are trouble-shooting the problem, and expect it will take several weeks at best to identify and then fix the issue. The 22-hour travel time for communications to reach the spacecraft, now beyond the edge of the solar system more than 15 billion miles away, means that it will at minimum take about two days to find out if a transmitted fix works.

As the spacecraft was launched in 1977, most of the engineers now working on it were not even born then, and must deal with a technology that was designed before personal computers, no less smart phones, even existed. Like the entire 1960s space race, the two Voyager craft now beyond the solar system were built by engineers using slide rules.

Voyager-2 also had problems in August that engineers were able to fix, so the prognosis here is not bad.

Craters in a row

Craters in a row
Click for original image.

Cool image time from Mars! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on October 13, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It highlights a string of craters, all lined up in an almost straight line.

Were these craters caused by the impact of an asteroid that broke up as it burned its way through the thin Martian atmosphere? The lack of any raised rims argues instead that these are sinks produced not from impact but from a collapse into a void below, possibly a fault line.

Yet, almost all of the craters in this image, even those not part of this crater string, show no raised rims. If sinks, the voids below don’t seem to follow any pattern, which once again argues in favor of random impacts, with the string produced by a bolide breaking up just prior to hitting the ground.
» Read more

Galaxies in a row

Galaxies in a row
Click for original image.

Cool image time from Hubble! The picture to the right, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope as part of a survey of nearby “pecular” galaxies. What makes it unusual is the line of distant galaxies below the largest on the left.

The wonderful quality of this image also reveals several further galaxies, not associated with this system but fortuitously positioned in such a way that they appear to be forming a line that approaches the leftmost (in this image) component of Arp-Madore 2105-332, which is known individually as 2MASX J21080752-3314337. The rightmost galaxy, meanwhile, is known as 2MASX J21080362-3313196. These hefty names do not lend themselves to easy memorisation, but they do actually contain valuable information: they are coordinates in the right ascension and declination system used widely by astronomers to locate astronomical objects.

Both larger galaxies are thought to be about 200 million light years away, with the smaller ones far more distant. If you look at the full resolution image, you will see that there are at least six galaxies in that line, one that appears to be an elliptical galaxy with all the rest a variety of different types of spiral galaxies. The detail provided by Hubble is truly astonishing.

Though they are not linked to the larger galaxies, it is not clear if they are linked to each other.

Webb takes infrared false-color image of supernova remnant Cassiopeia A

Cass A in infrared
Click for original image.

Using the Webb Space Telescope, astronomers have obtained the first wide full infrared view of the supernova remnant Cassiopeia A, the remains of a supernova that occurred about 11,000 years ago. That image is to the right, reduced to post here.

The most noticeable colors in Webb’s newest image are clumps represented in bright orange and light pink that make up the inner shell of the supernova remnant. Webb’s razor-sharp view can detect the tiniest knots of gas, comprised of sulfur, oxygen, argon, and neon from the star itself. Embedded in this gas is a mixture of dust and molecules, which will eventually become components of new stars and planetary systems. Some filaments of debris are too tiny to be resolved by even Webb, meaning they are comparable to or less than 10 billion miles across (around 100 astronomical units). In comparison, the entirety of Cas A spans 10 light-years across, or 60 trillion miles.

…When comparing Webb’s new near-infrared view of Cas A with the mid-infrared view, its inner cavity and outermost shell are curiously devoid of color. The outskirts of the main inner shell, which appeared as a deep orange and red in the MIRI image, now look like smoke from a campfire. This marks where the supernova blast wave is ramming into surrounding circumstellar material. The dust in the circumstellar material is too cool to be detected directly at near-infrared wavelengths, but lights up in the mid-infrared.

The four rectangles mark specific features of particular interest, with #4, dubbed by the scientists Baby Cas, the most intriguing.

This is a light echo, where light from the star’s long-ago explosion has reached and is warming distant dust, which is glowing as it cools down. The intricacy of the dust pattern, and Baby Cas A’s apparent proximity to Cas A itself, are particularly intriguing to researchers. In actuality, Baby Cas A is located about 170 light-years behind the supernova remnant.

By comparing this infrared view with Hubble’s optical and Chandra’s X-ray views, astronomers will be able to better decipher Cas A’s make-up and geometry.

The steep mountain slopes inside Valles Marineris

Overview map

The steep mountain slopes inside Valles Marineris
Click for full image.

Time for another cool image showing the dramatically steep terrain of Valles Marineris on Mars, the largest known canyon in the solar system. The picture to the right, cropped, reduced, and enhanced to post here, was taken on October 31, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The scientists rightly label this picture “Steep Slopes in West Melas Chasma”. The red dot marks the high point on this ridgeline. The green dot at the upper left marks the lowest point in the picture, about 4,800 feet below the peak. The blue dot on the right edge marks the low point on the ridge’s eastern flank, about 4,600 feet below the peak. The cliff to the east of the peak drops quickly about 1,300 feet in less than a mile.

On the overview map above, the white dot marks the location. The inset is an oblique view, created from a global mosaic of MRO’s context camera images, with the white rectangle indicating approximately the area covered by the picture above.

The immense scale of Valles Marineris must once again be noted. The elevations in this picture are comparable to the descent you make hiking down from the South Rim of the Grand Canyon. They pale however when compared to Valles Marineris. In the inset I have indicated the rim and floor of Valles Marineris in this part of the canyon. The elevation distance between the two is 18,000 feet.

In other words, the canyon to the east of this ridge is quite comparable in size to the Earth’s Grand Canyon, and it is hardly noticeable within the larger canyon of Valles Marineris.

Big Martian gullies partly filled with glacial material

Overview map

Big Martian gullies partly filled with glacial material

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on August 18, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists dub as “large gullies with infilled alcoves.”

Gullies on Mars were one of the first discoveries by orbiters of small-scalle potential water-caused features on the Red Planet. The favorite explanation for their formation today involves the seasonal freeze-thaw cycle, combined with the deposition of ice and dry ice frost in the winter. When that ice and dry ice sublimates away in the spring it causes collapse and erosion, widening the gullies.

These gullies also exhibit evidence that underground and glacial ice might contribute as well. The material in the largest gullies looks like a mixture of glacial material and dust and debris. It could also be that there is ice impregnated in the ground, which can cause large collapses when it sublimates away.

The white rectangle on the overview map and inset above marks the location of this picture, on the western rim of a 13-mile-wide unnamed crater inside the western portion of the 2,000-mile-long mid-latitude strip on Mars I dub glacier country, since every image from orbit shows evidence of glaciers.

This picture is no different, as the horizontal cracks at the base of the crater rim suggests the glacier that fills the crater floor is being pulled apart by gravity at its edges. The elevation drop from the top of the rim to the floor is about 3,200 feet, so any ice on that slope will definitely be stressed by gravity. Such cracks are therefore not surprising.

Psyche takes its first pictures

The spacecraft Psyche — going to the metal asteroid Psyche — has successfully taken its first pictures, proving its camera and pointing system work as planned.

The pictures, taken on December 4, 2023 from about 16 million miles from Earth, are actually quite boring, merely showing a field of stars. However,

The imager instrument, which consists of a pair of identical cameras, captured a total of 68 images, all within a star field in the constellation Pisces. The imager team is using the data to verify proper commanding, telemetry analysis, and calibration of the images. …The imager takes pictures through multiple color filters, all of which were tested in these initial observations.

At this moment all looks good for Psyche’s eventual arrival at Psyche in 2029.

Mars Reconnaissance Orbiter takes another look at the non-face on Mars

The non-face on Mars
Click for original image

In 2007, shortly after it began science operations in Mars orbit, the science team for Mars Reconnaissance Orbiter (MRO) pointed its high resolution camera at the so-called “Face on Mars”, taking a picture that confirmed (as had Mars Global Surveyor several years earlier) that this “face” was a non-face, simply a mesa whose features made it appear roughly facelike in low resolution imagery.

Now, more than sixteen years later, scientists have used MRO to take a new picture of the non-face mesa. That picture is to the right, cropped, reduced, and sharpened to post here. Compared to the 2007 photo the new photo has far better lighting conditions, revealing many details on the mesa’s eastern half that were mostly obscured by shadows previously.

In fact, these new details strongly suggest that the depression on the mesa’s eastern slopes harbors a decaying glacier. At least, that is what the features there resemble.
» Read more

China launches Egyptian Earth observation satellite

China successfully launched an Egyptian Earth observation satellite on December 4, 2023, its Long March 2C rocket lifting off from its Jiquan spaceport in northwestern China.

The satellite was built in Egypt with Chinese assistence, and is designed to study water and land resources for Egypt.

No word on where the rocket’s lower stages, which use toxic hypergolic fuels, crashed within China.

The leaders in the 2023 launch race:

89 SpaceX
54 China
16 Russia
7 Rocket Lab
7 India

American private enterprise still leads China in successful launches, 101 to 54, and the entire world combined 101 to 86. SpaceX by itself now leads the entire world (excluding other American companies) 89 to 86.

Sunspot update: The Sun continues to prove that solar scientists understand nothing

With today’s monthly update from NOAA of its graph tracking the number of sunspots on the Sun’s Earth-facing hemisphere, we find that the Sun continues to confound the experts. As I do every month, I have posted this graph below, with additional details to provide the larger context.

In November the sunspot count rose slightly, but remained well below the highs that had occurred through most of the first half of 2023. Yet, despite that continuing reduction in the number of sunspots, the overall amount of activity remains above the prediction of some scientists, and below the prediction of other scientists.
» Read more

Lava-filled Martian crater

Lava-filled Martian crater
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on July 10, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the northeast corner of an unnamed 7-mile-wide crater, located near the equator in the dry Martian tropics.

The MRO science team labels this “crater and lava fill”, suggesting that the crater interior is filled with lava material. The nature of that crater floor reinforces this conclusion, as it is relatively smooth and does not have rough aspects of glacial material found in craters in the mid-latitudes. Instead, it looks like a frozen lake of lava that has the peaks of mostly buried features poking up at various spots.

What makes this crater interesting however are the gullies on the northern interior rim. Gullies on Mars are normally thought to be associated with some water-frost-ice process, probably seasonal, where the thaw-freeze cycle causes small collapses and avalanches. Yet, this crater is almost at the equator, in a very dry region where no evidence of near-surface ice is found. Gullies here suggest the hypothesis for explaining the gullies on Mars have not quite solved the mystery.
» Read more

Astronomers: A solar system with six Earth-sized planets orbiting in perfect resonance

The resonances of this exo-solar system
Click for original image.

Astronomers today announced the discovery of a solar system with six Earth-sized exoplanets that orbit their Sun-like star in a synchronized manner, their orbits in a gravitational lock-step called resonance.

The graphic to the right illustrates that pattern. From the press release:

While multi-planet systems are common in our galaxy, those in a tight gravitational formation known as “resonance” are observed by astronomers far less often. In this case, the planet closest to the star makes three orbits for every two of the next planet out – called a 3/2 resonance – a pattern that is repeated among the four closest planets.

Among the outermost planets, a pattern of four orbits for every three of the next planet out (a 4/3 resonance) is repeated twice. And these resonant orbits are rock-solid: The planets likely have been performing this same rhythmic dance since the system formed billions of years ago. Such reliable stability means this system has not suffered the shocks and shakeups scientists might typically expect in the early days of planet formation – smash-ups and collisions, mergers and breakups as planets jockey for position. And that, in turn, could say something important about how this system formed. Its rigid stability was locked in early; the planets’ 3/2 and 4/3 resonances are almost exactly as they were at the time of formation. More precise measurements of these planets’ masses and orbits will be needed to further sharpen the picture of how the system formed.

All the planets have orbits less than 55 days long, and though all have masses less than six Earth-masses, data suggests they more resemble Neptune because of their expanded gaseous make-up caused by the close orbits to the star.

Future observations are planned, most especially with Webb because its infrared capability will detect much of the chemistry of this system.

Communications resume with Mars orbiters and rovers

It now appears that communications have resumed between Mars and the Earth, the planets having moved do that the Sun is no longer in between. From an update by the Curiosity science team today:

Mars has just emerged from its solar conjunction period, when sending commands to all Mars spacecraft was not safe for three weeks since the Red Planet was behind the Sun as seen from Earth. During that time, Curiosity followed a long plan of instructions covering Sols 4004-4022 which were uploaded to the rover during the week of October 30. The early word on is that the rover weathered the long blackout period just fine.

During the black-out the rovers had continued to upload data to the orbiters above, and some of that data was relayed back to Earth this past weekend, though the relay was “spotty” with some data packages lost.

Communications have now cleared up, and so we should expect both Curiosity and Perseverance to resume full operations again.

Hubble in safe mode due to gyroscope problem

One of the three working gyroscopes (three have already failed0 on the Hubble Space Telescope experienced repeated problems in mid-November, and has now put the telescope in safe mode while engineers trouble-shoot the problem.

Hubble first went into safe mode Nov. 19. Although the operations team successfully recovered the spacecraft to resume observations the following day, the unstable gyro caused the observatory to suspend science operations once again Nov. 21. Following a successful recovery, Hubble entered safe mode again Nov. 23.

The team is now running tests to characterize the issue and develop solutions. If necessary, the spacecraft can be re-configured to operate with only one gyro. The spacecraft had six new gyros installed during the fifth and final space shuttle servicing mission in 2009. To date, three of those gyros remain operational, including the gyro currently experiencing fluctuations. Hubble uses three gyros to maximize efficiency, but could continue to make science observations with only one gyro if required.

The long term plan when the telescope only has two working gyros, assuming no improvised maintenance mission is flown to Hubble to give it new gyroscopes, is to work with only one (treating the second as a back-up) in order to extend the telescope’s life as long as possible.

And though it is true that Hubble could continue to do science with only one gyro, images from that point will likely not be as sharp, and thus will end more than three decades of imagery that changed our perception of the universe.

The Chinese 2-meter Xuntian optical space telescope, now scheduled for launch in 2025, will likely then replace Hubble as the world’s top optical telescope. American astronomers better start learning Chinese, assuming China even allows them access. They will not have a right to complain, however, as it was their decision to not build a Hubble replacement, in their 2000, 2010, and 2020 decadal reports.

Thick windblown ash in Mars’ largest mountain region

Thick windblown ash near Mars' largest volcano
Click for original picture.

The cool image to the right, rotated, cropped, reduced, and sharpened to post here, was taken on September 1, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows what the scientists label as “Erosional Features on Olympus Mons.”

What is eroding? Based on the picture itself the first guess is volcanic ash, as these features strongly resemble the many features seen in the Medusae Fossae Formation, the largest volcanic ash field on Mars — about the size of the subcontinent of India.

Medusae however is many thousand miles away, and is not apparently related to any specific volcano. These features are instead directly linked to Olympus Mons, the largest known volcano in the solar system. However, much of the terrain for many hundreds of miles around Olympus is covered with flood lava, which was deposited and hardened quickly to form smooth featureless plains that have resisted much erosion over the eons. Here the terrain is clearly eroded, which suggests that if the material here is volcanic, it was laid down not by flood lava but by falling ash that got compressed but was easily friable and could be blown away by the winds of Mars’ thin atmosphere.
» Read more

Close-up of Helene, one of Saturn’s many many moons

Helene, as seen by Cassini in 2011
Helene, as seen by Cassini in 2011

Cool image time! Though the Saturn orbiter Cassini is long gone, having been sent into Saturn’s atmosphere to burn up in 2017, its image archive of magnificent pictures is still available to peruse. To encourage others to do so, NASA today issued a series of press releases, listing the spacecraft’s top ten pictures from 2011, 2012, 2013, 2014, and 2015.

The picture to the right, cropped, reduced, and sharpened to post here, comes from the 2011 collection and was taken on June 18, 2011. It shows a close-up of 21-mile-wide Helene, one of Saturn’s many many moons and only discovered in 1980. Back in 2010 I featured another Cassini image of Helene, but that picture did not reveal the small surface features seen in the photo to the right.

The light and dark streaks probably indicate dust flowing downhill on the surface. Though the gravity of this object is tiny, it will be enough for dust to act like almost like a liquid, flowing down grade and then pooling in the central pond at the lowest point near the center of the picture. That process is so much like liquid flowing that it appears to have even eroded gullies on slopes near the top and bottom of the picture.

Side note: NASA’s “Science Editorial Team” also issued a press release today that falsely and ignorantly claimed these releases were “to celebrate 10 years since arriving at Saurn,” implying that Cassini arrived in 2013 and is still functioning.

The problem is that Cassini arrived in orbit around Saturn in 2004 and as I noted above ended its mission in 2017. It thus appears that the NASA Science Editorial Team is unable to do even one five-second web search to find out what really happened.

Just another data point indicating the dark age we now live in.

1 17 18 19 20 21 271