Etched terrain on Mars

Etched terrain on Mars
Click for original image.

Today’s cool image is another example of what I call a “What the heck!” image. The picture to the right, simply cropped to post here, was taken on September 22, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

It shows what the scientists label as “etched terrain,” an incredibly twisted and eroded landscape that to me actually defies description. In trying to research what scientists have learned and theorized about this terrain, it appears they think it is material that flowed over older terrain (thus its lack of many craters) that was subsequently eroded by later processes.

Why it eroded so strangely however is not really understood. It could have been caused by near-surface ice sublimated to the surface and thus causing many breaks, but since this terrain is located right on the equator in the dry tropics, it is a very long time since water was present here.
» Read more

Hubble vs Webb, or why the universe’s secrets can only be uncovered by looking at things in many wavelengths

Hubble view of Sombrero galaxy
Click for original image.

Time for two cool images of the same galaxy! The picture above shows the Sombrero Galaxy as taken by the Hubble Space Telescope in 2003. The picture below is that same galaxy as seen by the Webb Space Telescope in the mid-infrared using false colors. From the press release:

In Webb’s mid-infrared view of the Sombrero galaxy, also known as Messier 104 (M104), the signature, glowing core seen in visible-light images does not shine, and instead a smooth inner disk is revealed. The sharp resolution of Webb’s MIRI (Mid-Infrared Instrument) also brings into focus details of the galaxy’s outer ring, providing insights into how the dust, an essential building block for astronomical objects in the universe, is distributed. The galaxy’s outer ring, which appeared smooth like a blanket in imaging from NASA’s retired Spitzer Space Telescope, shows intricate clumps in the infrared for the first time.

Researchers say the clumpy nature of the dust, where MIRI detects carbon-containing molecules called polycyclic aromatic hydrocarbons, can indicate the presence of young star-forming regions. However, unlike some galaxies studied with Webb … the Sombrero galaxy is not a particular hotbed of star formation. The rings of the Sombrero galaxy produce less than one solar mass of stars per year, in comparison to the Milky Way’s roughly two solar masses a year. Even the supermassive black hole, also known as an active galactic nucleus, at the center of the Sombrero galaxy is rather docile, even at a hefty 9-billion-solar masses. It’s classified as a low luminosity active galactic nucleus, slowly snacking on infalling material from the galaxy, while sending off a bright, relatively small, jet.

In infrared the galaxy’s middle bulge of stars practically vanishes, exposing the weak star-forming regions along galaxy’s disk.

Both images illustrate the challenge the universe presents us in understanding it. Basic facts are often and in fact almost always not evident to the naked eye. We always need to look deeper, in ways that at first do not seem obvious. This is why it is always dangerous to theorize with certainty any explanation too soon, as later data will always change that explanation. You can come up with an hypothesis, but you should always add the caveat that you really don’t know.

By the way, this concept applies not just to science. Having absolute certainty in anything will almost always cause you to look like a fool later. Better to always question yourself, because that will make it easier for you to find a better answer, sooner.

We need only look at the idiotic “mainstream press” during the months leading up to the November election to have an example of someone with certainty who is now exposed as an obvious fool.

The Sombrero Galaxy as seen by Webb
Click for original image.

Martian mountains amidst a deep sea of sand

Overview

A Martian mountain surrounded by a sea of sand
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on July 9, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The white dot on the overview map above marks the location, inside the deep enclosed and very large 130-mile-wide depression dubbed Juventae Chasma.

The mountain in the picture raises above the sand sea that surrounds it from 1,000 to 2,300 feet, depending on direction, as the downhill grade of the sand sea is to the east. Thus, on the west the mountain rises less, while on the east the height is the greatest.

The inset illustrates the extent of the sand sea. It covers the ground for many miles in all directions. The way the sand surrounds these mountains suggests the prevailing winds blow from the west to the east. In fact, the facts suggest that this sand is volcanic ash that was blown into Juventae from many eruptions that occurred over time to the west, where it got trapped. The wind and gravity deposited the sand into the 20,000 to 25,000-foot-deep chasm, where the wind was insufficient to lift it out again.

One wonders how deep that sand sea might be. The lack of any surface features at all suggests it could be quite deep, burying everything but the highest peaks. In fact, if a geologist could drill a core through that sand I suspect he or she might be able to document the entire eruption history of much of Mars.

Distinct gully draining the side of a Martian crater

Distinct gully in crater on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on August 20, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The science team labels the entire picture simply as “gully,” obviously referring to that distinct and somewhat deep hollow in the middle of the picture.

Most gullies that have been found on Mars tend to look more eroded and rougher than this hollow. Here, it appears almost as if the process that caused this gully occurred relatively recently, resulting in its sharp borders that have not had time to crumble into softer shapes.

The crater interior slope is about 1,500 feet high. Whatever flowed down it however did not do it in an entirely expected manner. As it flowed it curved to the west, so that the impingement into the glacial material that fills the crater floor is to the west of the gully itself. Either that, or that impingement was caused by a different event at a different earlier time.
» Read more

Starship gets contract to deliver Lunar Outpost’s rover to Moon

Capitalism in space: The lunar lander version of SpaceX’s Starship has won a contract from the startup Lunar Outpost to deliver its manned rover to the Moon.

The Colorado company announced Nov. 21 that it signed an agreement for SpaceX to use Starship to transport the company’s Lunar Outpost Eagle rover to the moon. The companies did not disclose a schedule for the launch or other terms of the deal.

This announcement is less a new deal for SpaceX and more an effort to convince NASA to award Lunar Outpost the full contract to build the rover. In April 2024 Lunar Outpost was one of three companies chosen by NASA to receive initial development grants to design their proposed manned lunar rovers. NASA expects to award the full contract, worth potentially up to $4.6 billion, to one of these three companies later this year, after seeing their preliminary designs. It wants to choose two, but at present says budget limitations make that impossible.

ESA and JAXA sign agreement to increase cooperation and accelerate development of Ramses mission to Apophis

The new colonial movement: The European Space Agency (ESA) and Japan’s own space agency JAXA on November 20, 2024 signed a new cooperative agreement to increase their joint work on several missions, the most important of which is the proposed Ramses mission to the potentially dangerous asteroid Apophis during its 2029 close fly-by of Earth.

Two agencies agreed to accelerate to study potential cooperation for ESA’s Rapid Apophis Mission for Space Safety (RAMSES) which aims to explore the asteroid Apophis that will pass close to our planet on 13 April 2029, including but not limited to provision of thermal infrared imager and solar array wings as well as possible launch opportunities.

The two countries are already working together on two different planetary missions, the BepiColombo mission to Mercury and the Hera mission to the asteroid Dymorphos. Both are on their way to their targets. This new agreement solidifies the commitment of both to make sure Ramses is funded, built, and launched in the relatively short time left before that 2029 Earth fly-by. At the moment the ESA has still not officially funded it fully.

Gophers dropped near Mt St. Helens for one day cause a gigantic bloom of plant life 40 years later

In 1982, two years after the Mt. St. Helens volcanic eruption, scientists decided to do an experiment: They dropped six gophers into one meter square enclosures near the eruption with the hope the animals’ digging for one day would bring good soil close enough to the surface to encourage the return of plant life.

The results forty-plus years later:

Six years after their trip, there were over 40,000 plants thriving where the gophers had gotten to work, while the surrounding land remained, for the most part, barren. Studying the area over 40 years later, the team found they had left one hell of a legacy. “Plots with historic gopher activity harbored more diverse bacterial and fungal communities than the surrounding old-growth forests,” the team explained. “We also found more diverse fungal communities in these long-term lupine gopher plots than in forests that were historically clearcut, prior to the 1980 eruption, nearby at Bear Meadow.”

“In the 1980s, we were just testing the short-term reaction,” Allen added. “Who would have predicted you could toss a gopher in for a day and see a residual effect 40 years later?”

You can read the published paper here. It appears the gophers’ action activated the microbiological life in the soil, which in turn made it easier for plant life to return.

The potential benefits of this research is gigantic, especially in areas that have been devastated by any number of natural and man made disasters.

A new geologic map of one of the Moon’s largest impact basins

Orientale Basin on the Moon
Click for original image.

Using data from Lunar Reconnaissance Orbiter (LRO), scientists have now produced a high resolution geological map of Orientale Basin, one of the largest impact basins on the Moon — at about 600 miles across — and located just on the edge of the Moon’s visible near side.

That map is to the right, reduced and sharpened to post here. You can read the paper here [pdf]. From the press release:

Planetary Science Institute Research Scientist Kirby Runyon is a lead author on a paper published in the Planetary Science Journal containing a new high-resolution geologic map of Orientale basin that attempts to identify original basin impact melt. The hope is that future researchers use this map to target sample return missions and pin down impact dates for this and other impact basins.

“We chose to map Oriental basin because it’s simultaneously old and young,” Runyon said. “We think it’s about 3.8 billion years old, which is young enough to still have its impact melt freshly exposed at the surface, yet old enough to have accumulated large impact craters on top of it as well, complicating the picture. We chose to map Orientale to test melt-identification strategies for older, more degraded impact basins whose ages we’d like to know.”

The map’s prime purpose is to pin down locations where material from the actual impact exist and can be returned to Earth for precise dating, thus helping to create a more accurate timeline of the Moon’s formation as well as the entire solar system’s accretion rate.

A spiral galaxy as seen from the side

A spiral galaxy seen from the side
Click for original image.

Cool image time! The picture to the right, reduced to post here, was taken by the Hubble Space Telescope of what is believed to be a spiral galaxy seen edge-on. The galaxy itself is estimated to be 150 million light years away, and this view highlights two major features, the dust lanes that run along the galaxy’s length and its distinct central nucleus, bulging out from the galaxy’s flat plain.

The way this image was produced however is intriguing on its own:

Like most of the full-colour Hubble images released by ESA/Hubble, this image is a composite, made up of several individual snapshots taken by Hubble at different times and capturing different wavelengths of light. … A notable aspect of this image is that the two sets of Hubble data used were collected 23 years apart, in 2000 and 2023! Hubble’s longevity doesn’t just afford us the ability to produce new and better images of old targets; it also provides a long-term archive of data which only becomes more and more useful to astronomers.

All told, four Hubble data sets were used to produce the picture.

Oh no! Starship/Superheavy is loud!

Superheavy after its flight safely captured at Boca Chica
Superheavy after its October flight, safely captured at Boca Chica

Time for another Chicken Little report: A new study of the sound levels produced by SpaceX’s Superheavy booster during its fifth launch and landing at Boca Chica in October 2024 suggests that it produces more noise than predicted.

Overall … Gee et al. note that one of the most important conclusions from their data is the differences between Starship’s launch noise levels and those of SLS and Falcon 9. The team found that Starship produces significantly more noise at liftoff than both SLS and Falcon 9 in both A-weighted and Z-weighted (unweighted) noise metrics.

When compared to Falcon 9, the noise produced by a single Starship launch is equivalent to, at a minimum, 10 Falcon 9 launches. Despite SLS producing more than half of Starship’s overall thrust at liftoff, Starship is substantially louder than SLS. More specifically, one Starship launch is equivalent to that of four to six SLS launches regarding noise production. As has been hypothesized by numerous other studies into the noise produced by rockets, this significant difference in noise levels may be due to the configuration of first-stage engines on the rockets. For example, although the Saturn V produced less overall thrust than SLS, it produced two decibels more noise than SLS, which may be due to the clustered engine configuration on Saturn V’s first stage.

We’re all gonna die! Despite the doom-mongering of this study (which you can read here), the only issue noted by the paper from this noise was car alarms going off. And even here, the spread of the noise was asymmetrical, occurring in only one direction.

The concern about sonic booms has always been the annoyance they cause to residents near airports. In the case of Superheavy, it is very unlikely it will ever fly at a frequency to make its noise intolerable. More important, the nature of a spaceport versus an airport reduces the concern considerably, since a spaceport requires a much larger buffer area, and at both of SpaceX’s Starship launchsites in Florida and Texas almost everyone living close by works for the company or in the space business. They are not going to complain.

And while studying these noise issues is useful, we must not be naive about the real purpose of such studies. Underneath its high-minded science goals is a much more insidious one: finding a weapon for shutting down SpaceX. This concern of mine might be overstated, but remember, almost our entire academic community is rabidly leftist and made up of partisan Democrats. They hate Musk for his politics, and have been aggressively looking for ways to hurt him. This sound study is just another tool in that war.

Boxwork in the dry Martian tropics

Boxwork on Mars
Click for original image.

Cool image time! The picture to the right, cropped and enhanced to post here, was taken on July 17, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label as boxwork, a pattern of intersecting straight ridges criss-crossing each other in a generally random manner.

The ridges themselves are very small, only a few feet high. To make them more visible I have purposely cropped this section without reducing its resolution. I have also increased the contrast.

What caused them? According to this paper [pdf] about similar boxwork found on Mount Sharp in Gale Crater, the boxwork “formed when cements filled existing pore spaces and fractures in fractured rock, and these cements were left as topographic ridges after erosion.”

In other words, the surface hardened, then fractured. Later more resistent material, likely lava, filled the cracks. When erosion later stripped the top surface away, the lava was more resistent and so became the ridges we now see.
» Read more

Pakistan to fly a small rover on China’s Chang’e-8 lunar lander

In an agreement signed yesterday, the Space and Upper Atmo­sphere Research Comm­ission (Suparco) in Pakistan announced it will collaborate with China to build a small rover that will to fly on China’s Chang’e-8 lunar lander.

The lander is present scheduled to land near the Moon’s south pole in 2030, will be China’s second lander to the south pole region, and will also act to officially establish China’s International Lunar Research Station (ILRS) on the lunar surface. It will also include a “hopper” to explore the nearby surface.

Pakistan had already signed on to China’s space alliance to build the ILRS. China’s present list of partners is as follows: Azerbaijan, Belarus, Egypt, Kazakhstan, Nicaragua, Pakistan, Russia, Serbia, South Africa, Thailand, Turkey, and Venezuela. That partnership also includes about eleven academic or governmental bureaucracies.

Another cool hiking location on Mars

Overview map

Another cool hiking location on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on August 10, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

My reason to posting this I admit is selfish and tourist-oriented. This narrow ridge, about a mile long and about 300 to 600 feet high, appeals directly to my hiking passions. A trail along its length would provide any hiker some really spectactular views.

The scientists took the picture because of the geology. The white dot on the overview map above marks the location, a short channel dubbed Daga Vallis that connects two major canyons in the eastern part of Valles Marineris, the largest known canyon system in the solar system. This ridge and several nearby parallel ridges were apparently made of something, possibly lava, that was resistent to the theorized ancient catastrophic floods that scientists presently believe carved out these channels and canyons.

In the inset the dotted line indicates one possible hiking trail route that travels the full length of the ridge but then heads south to continue along the rim of a 1,200-foot-high cliff face. For future Martian colonists, I offer this site as a great place to set up a bed-and-breakfast, surrounded by many potential hikes of incredible stark beauty.

Giant dunes in a dune sea inside a Martian crater

Overview map

Giant dunes in a Martian crater

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on July 17, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The white dot on the overview map above marks the location, inside a thirty-mile-wide dune sea, or erg, that sits in the center of the floor of 80-mile-wide Russell Crater.

That erg is interesting in that it appears the dunes get larger and larger as you move from the perimeter to its center. Thus, the dunes in the picture are called mega-dunes, about 200-feet-high. They dwarf the smaller dunes at the erg’s edge.

This picture was taken as part of a long term monitoring program to track the coming and going of seasonal dry ice frost on these dunes. It is summer when this picture was taken, so there is relatively little visible frost, though the bright blue areas in the color strip could possibly be the last remnants from winter. In winter, data suggests the entire surface of these dunes is covered by dry ice frost.

As the location is at 54 degrees south latitude, it likely sits at the northernmost edge of the southern dry ice mantle that in winter covers each of the Martian poles, down to about 60 degrees latitude.

Meandering channels on Mars

Meandering channels on Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on August 2, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The scientists describe this as “meandering channels,” which seems appropriate. The downhill grade here is to the southeast. In wider views these channels extend from the northwest to the southeast about 31 miles total (with this location near the center), with the total elevation loss about 3,000 feet.

Note the splash apron around the 4,500-foot-wide unnamed crater as well as how the largest channel seems to terminate suddenly at the crater. Though at first glance it appears this impact occurred after the channels, that some of the channels cut into that splash apron suggests otherwise.
» Read more

Parker to make its last fly-by of Venus

The Parker Solar Probe is scheduled to complete its last fly-by of Venus on November 6, 2024, passing only 233 miles above the planet’s surface.

The flyby will adjust Parker’s trajectory into its final orbital configuration, bringing the spacecraft to within an unprecedented 3.86 million miles of the solar surface on Dec. 24, 2024. It will be the closest any human made object has been to the Sun.

That close solar approach will occur on December 24, 2024. Whether the spacecraft can survive is the main question, and we won’t find out until three days later, when it sends a signal to confirm its survival. If successful, it will then attempt to repeat that close fly-by at least two more times.

As for the Venus fly-by, the spacecraft will use one instrument to attempt to peer into Venus’s clouds.

WISE/NEOWISE burns up in the atmosphere

NASA’s Wide-field Infrared Survey Explorer (WISE, later renamed NEOWISE) has ended its fifteen years in orbit, burning up in the atmosphere on November 1, 2024.

In its initial mission it did an infrared survey of the sky, discovering millions of black holes, many of the most luminous galaxies, and numerous brown dwarfs. It was then repurposed to survey the sky for near Earth objects, asteroids that have the potential to impact the Earth, discovering more than two hundred new asteroids while tracking more precisely another 3,000. It did this by repeating its survey over and over so that moving objects could be spotted.

Sunspot update: in October solar activity increased after September’s crash

Time for this month’s sunspot update. As I have done every month since I started this website in 2010, I am posting NOAA’s most recent update of its monthly graph tracking the number of sunspots on the Sun’s Earth-facing hemisphere, adding some additional details to provide context.

In October, following a crash in activity in September, the Sun showed a slight increase the number of sunspots. The increase did not match the drop from the month before, but it brought the activity back up to the level seen during the summer.
» Read more

A 2017 supernova as spotted by Hubble

Before and after of galaxy with supernova
Click for original image.

Cool image time! The pictures to the right were both compiled from photos taken by the Hubble Space Telescope, with the bottom annotated to indicate the location of a 2017 supernova that was not visible in the earlier 2005 picture.

In this collage two images of the spiral galaxy NGC 1672 are compared: one showing supernova SN 2017GAX as a small green dot, and the other without. The difference between the images is that both have been created by processing multiple individual Hubble images, each taken to capture a specific wavelength of visible light, and combining them to make a full-colour image. In one of those filtered frames, taken in 2017, the fading supernova is still visible

NGC 1672 is considered a barred spiral galaxy. Located an estimated 52 million light years away, the 2017 supernovae was not the last detected within it. In 2022 a second supernovae occurred. That’s two supernovae within five years. Meanwhile the Milky Way has not seen a supernova in more than four centuries.

Another model proposed for explaining flowing liquid water in the distant Martian past

New model for explaining flowing water on Mars
Click for full resolution graphic.

A new model has now been proposed for explaining how liquid water could have once flowed on Mars and created the many channels and river-like features geologists see today.

This new theory posits that the carbon dioxide in the atmosphere, once thicker, fell as snow to bury water ice on the surface near the poles, where that ice then melted from pressure and heat from below to flow underground and then out into lower latitudes.

The paper, led by Planetary Science Institute Research Scientist Peter Buhler, describes how 3.6 billion years ago, carbon dioxide froze out of Mars’ atmosphere and deposited on top of a water ice sheet at the poles, insulating heat emanating from Mars’ interior and increasing the pressure on the ice. This caused roughly half of Mars’ total water inventory to melt and flow across its surface without the need for climatic warming.

The graphic to the right is figure 1 from Buhler’s paper. It shows this process in the south pole, flowing north through Argyre Basin and along various now meandering channels to eventually flow out into the northern lowland plains. In every case Buhler’s model posits the water flowed in “ice-covered rivers” or “ice-covered lakes”, the ice protecting the water so that it could flow as a liquid.

This model confirms once again my impression that the Mars planetary community is increasingly considering glaciers and ice as a major past factor in shaping the planet we see today. This model suggests liquid water under ice, but it still remains possible that ice alone could have done the job.

A somewhat typical but strange crater in Mars’ Death Valley

A somewhat typical crater in Mars' death valley
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on August 29, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The camera team labels the primary feature in this picture as “ridges,” but what I see is a strange crater that at first glance appears to be impact-caused, but at closer inspection might be something else entirely.

This unnamed crater is about one mile wide. It is only about fifty feet deep, but sits above the surround landscape by about 200 feet. That high position suggests strongly that this crater was not formed by an impact by is instead a caldera from some sort of volcanic activity, with the splash apron around it simply examples of past magma flows erupting from within.

The ridges inside the crater might be glacial debris, as this location is at 35 degrees south latitude, making near surface ice possible.
» Read more

Scientists use Hubble and Webb to confirm there are as yet no planets forming in Vega’s accretion disk

Hubble and Webb images of Vega's accretion disk
Click for original image.

Using both the Hubble and Webb space telescopes, scientists have now confirmed, to their surprise, that the accretioni disk that surrounds the nearby star Vega is very smooth with almost no gaps, and thus apparently has not new exoplanets forming within it.

The two pictures to the right, cropped and reduced to post here, come from two different papers. The Hubble paper is here [pdf] while the Webb paper is here [pdf]. From the press release:

Webb sees the infrared glow from a disk of particles the size of sand swirling around the sizzling blue-white star that is 40 times brighter than our Sun. Hubble captures an outer halo of this disk, with particles no bigger than the consistency of smoke that are reflecting starlight.

The distribution of dust in the Vega debris disk is layered because the pressure of starlight pushes out the smaller grains faster than larger grains. “Different types of physics will locate different-sized particles at different locations,” said Schuyler Wolff of the University of Arizona team, lead author of the paper presenting the Hubble findings. “The fact that we’re seeing dust particle sizes sorted out can help us understand the underlying dynamics in circumstellar disks.”

The Vega disk does have a subtle gap, around 60 AU (astronomical units) from the star (twice the distance of Neptune from the Sun), but otherwise is very smooth all the way in until it is lost in the glare of the star. This shows that there are no planets down at least to Neptune-mass circulating in large orbits, as in our solar system, say the researchers.

At the moment astronomers consider the very smooth accretion disk surrounding Vega to be rare and exception to the rule, with most debris disks having gaps that suggest the presence of newly formed exoplanets within them. That Vega breaks the rule however suggests the rule might not be right in the first place.

Weird ring-mounds in one of Mars’ largest craters

Weird ring mounds on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on August 16, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The science team labels these strange features “ring-mound landforms,” a term that has been used to describe [pdf] only vaguely similar features previously found in the Athabasca flood lava plain almost on the other side of Mars. That paper suggested that those ring mounds formed on the “thin, brittle crust of an active fluid flow” created by an explosive event. Since Athabasca is considered Mars’s most recent major flood lava event, the fluid was likely lava, which on Mars flows more quickly and thinly in the lower gravity.

Thus, in Athabasca the ring-mounds formed when a pimple of molten lava from below popped the surface.

But what about the ring mounds in the picture to the right?
» Read more

Post-collision images of two galaxies

Post-collision imagery by Hubble and Webb
Click for original image.

Using both the Hubble and Webb space telescopes, astronomers have now produced multi-wavelength images of the galaxies NGC 2207and IC 2163, as shown to the right.

Millions of years ago the smaller galaxy, IC 2163, grazed against the larger, NGC 2207, resulting today in increased star formation in both galaxies, indicated by blue in the Hubble photo. From the caption of the combined images:

Combined, they are estimated to form the equivalent of two dozen new stars that are the size of the Sun annually. Our Milky Way galaxy forms the equivalent of two or three new Sun-like stars per year. Both galaxies have hosted seven known supernovae, each of which may have cleared space in their arms, rearranging gas and dust that later cooled, and allowed many new stars to form.

The two images to the left leaves the Hubble and Webb separate, making it easier to see the different features the different wavelengths reveal. From this caption:

In Hubble’s image, the star-filled spiral arms glow brightly in blue, and the galaxies’ cores in orange. Both galaxies are covered in dark brown dust lanes, which obscure the view of IC 2163’s core at left. In Webb’s image, cold dust takes centre stage, casting the galaxies’ arms in white. Areas where stars are still deeply embedded in the dust appear pink. Other pink dots may be objects that lie well behind these galaxies, including active supermassive black holes known as quasars.

The largest and brightest pink area in the Webb image, on the bottom right and a blue patch in the Hubble image, is where a strong cluster of star formation is presently occurring.

“What the heck?” lava on Mars


Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on August 19, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Labeled merely as a “terrain sample,” it was likely snapped not for any specific research project, but to fill a gap in the camera schedule in order to maintain its proper temperature.

When the science team does this they try to pick interesting locations. Sometimes the picture is relatively boring. Sometimes, like the picture to the right, it reveals weird geology that is somewhat difficult to explain. The picture covers the transition from the smooth featureless plain to the north, and the twisting and complex ridges to the south, all of which are less than a few feet high.

Note the gaps. The downgrade here is to the west, and the gaps appear to vaguely indicate places where flows had occurred.
» Read more

Arecibo telescope collapsed because of a surprising engineering failure that inspections still should have spotted

Illustration of cable failure at Arecibo

According to a new very detailed engineering analysis into the causes of the collapse of the Arecibo radio telescope in Puerto Rico in 2020, the failure was caused first by a surprising interaction between the radio electronics of Arecibo and the traditional methods used to anchor the cables, and second by a failure of inspections to spot the problem as it became obvious.

The surprising engineering discovery is illustrated to the right, taken from figure 2-6 of the report. The main antenna of Arecibo was suspended above the bowl below by three main cables. The figure shows the basic design of the system used to anchor the cable ends to their sockets. The end of the cable bunches would be inserted into the socket, spread apart, and then zinc would be poured in to fill the gap and then act as a plug and glue to hold the cables in place. According to the report, this system has been used for decades in many applications very successfully.

What the report found however was at Arecibo over time the cable bunch and zinc plug slowly began to pull out of the socket, what the report labels as “zinc creep.” This was noted by inspectors, but dismissed as a concern because they still believed the engineering margins were still high enough to prevent failure at this point. In fact, this is exactly where the structure failed in 2020, with the first cable separating as shown in August 2020. The second cable did so in a similar manner in November 2020.

The report concluded that the “only hypothesis the committee could develop that provides a plausible but unprovable answer to all these questions and the observed socket failure pattern is that the socket zinc creep was unexpectedly accelerated in the Arecibo Telescope’s uniquely powerful electromagnetic radiation environment. The Arecibo Telescope cables were suspended across the beam of ‘the most powerful radio transmitter on Earth.'”

The report however also notes that the regular engineering inspections of the telescope had spotted this creep, which was clearly unusual and steadily becoming significant, and did not take action to address the issue when it should have. It also noted the slow response of the bureaucracy, not only to the damage caused earlier to the facility by Hurriane Maria in 2017, but to obtaining the funding for any repairs.

Ray Lugo [the principal investigator for Arecibo] described to the committee how months of his time during 2018 were spent writing, resubmitting, and justifying repair funding proposals. Repairs had to go through the traditional “bid and proposal” process, described in more detail below, which added years of delay.

We can forgive the inspectors somewhat for not noting the creep when they should, as its cause appears to be very unusual, still uncertain and rare, but the red tape that prevented proper and quick repair effort after the hurricane is shameful. Had the telescope gotten the proper support on time, the creep itself might have even been addressed, because the resources would have been there to deal with it.

Lab tests suggest water brines could also exist on large asteroids

Gullies in crater on Vesta
Click for original image.

In attempting to explain the existence of flow features that have been found on the interior walls of craters on the asteroids Ceres and Vesta — as shown in the image above — scientists recently performed a laboratory experiment which determined that a mixture of water and salt could produce those gullies.

The team modified a test chamber at the Jet Propulsion Laboratory to rapidly decrease pressure over a liquid sample to simulate the dramatic drop in pressure as the temporary atmosphere created after an impact on an airless body like Vesta dissipates. According to Poston, the pressure drop was so fast that test liquids immediately and dramatically expanded, ejecting material from the sample containers.

“Through our simulated impacts, we found that the pure water froze too quickly in a vacuum to effect meaningful change, but salt and water mixtures, or brines, stayed liquid and flowing for a minimum of one hour,” said Poston. “This is sufficient for the brine to destabilize slopes on crater walls on rocky bodies, cause erosion and landslides, and potentially form other unique geological features found on icy moons.”

The press release makes it sound as if this result makes the existence of subsurface water ice more likely on such asteroids as Ceres and Vesta, but previous research from the Dawn asteroid probe made that fact very clear, especially for Ceres, years ago. All this does is provide some evidence of what might be one process by which these erosion gullies form.

Hat tip to reader Milt.

Perseverance looks across Jezero Crater from on high

Panorama of Jezero Crater
Click for full resolution annotated image. Click here for unannotated full resolution image.

Cool image time! The panorama above, cropped, reduced, and sharpened to post here, was assembled from 44 pictures taken by the rover Perseverance on September 27, 2024 as it began its climb up the rim of Jezero Crater. If you click on it you can see the full resolution image that is also annotated to identify features within the crater as well as places where Perseverance has traveled.

The overview map below, with the blue dot showing the rover’s location when this panorama was taken. The yellow lines indicate the area covered by the panorama, with the arrow indicating the direction.

Overview map
Click for interactive map.

According to the information at the link, the rover has been experiencing some slippery sandy ground as it has been climbing.
» Read more

Two cubesats on Hera signal home

Engineers on the ground have now established good communications with the two cubesats that are being carried by the European probe Hera on its way to the binary asteroids Didymos and Dimorphos.

“Each CubeSat was activated for about an hour in turn, in live sessions with the ground to perform commissioning – what we call ‘are you alive?’ and ‘stowed checkout’ tests,” explains ESA’s Hera CubeSats Engineer Franco Perez Lissi.

…Travelling with Hera are two shoebox-sized ‘CubeSats’ built up from standardised 10-cm boxes. These miniature spacecraft will fly closer to the asteroid than their mothership, taking additional risks to acquire valuable bonus data.

Juventas, produced for ESA by GOMspace in Luxembourg will make the first radar probe within an asteroid, while Milani, produced for ESA by Tyvak International in Italy, will perform multispectral mineral prospecting.

This use of small cubesats in conjunction with a larger interplanetary probe is becoming increasingly routine, and provides a cheap and efficient way to increase the data and information obtained. Note too that both cubesats were apparently built entirely by private companies, thus establishing their creditionals as providers of interplanetary probes.

New issue with Voyager-1

The Voyager missions
The routes the Voyager spacecraft have
taken since launch.

According to a NASA report yesterday, engineers are dealing with a new technical problem that has occurred Voyager-1, flying out beyond the edge of the solar system.

On Oct. 16, the flight team sent a command to turn on one of the spacecraft’s heaters. While Voyager 1 should have had ample power to operate the heater, the command triggered the fault protection system. The team learned of the issue when the Deep Space Network couldn’t detect Voyager 1’s signal on Oct. 18.

The spacecraft typically communicates with Earth using what’s called an X-band radio transmitter, named for the specific frequency it uses. The flight team correctly hypothesized that the fault protection system had lowered the rate at which the transmitter was sending back data. This mode requires less power from the spacecraft, but it also changes the X-band signal that the Deep Space Network needs to listen for. Engineers found the signal later that day, and Voyager 1 otherwise seemed to be in a stable state as the team began to investigate what had happened.

Then, on Oct. 19, communication appeared to stop entirely. The flight team suspected that Voyager 1’s fault protection system was triggered twice more and that it turned off the X-band transmitter and switched to a second radio transmitter called the S-band. While the S-band uses less power, Voyager 1 had not used it to communicate with Earth since 1981. It uses a different frequency than the X-band transmitters signal is significantly fainter. The flight team was not certain the S-band could be detected at Earth due to the spacecraft’s distance, but engineers with the Deep Space Network were able to find it.

Though communications with the spacecraft continue, no data can be downloaded and work is essentially suspended while engineers troubleshoot why Voyager-1 kept initiating its fault system.

It is amazing that communications were still possible using the S-band after more than forty years. I would bet that no engineers from then still work at the Deep Space Network. Kudos to the engineers there now for finding the signal.

1 2 3 4 271