Data of the tidal fluxes on Titan by the Cassini spacecraft now suggest that there is a liquid ocean below Titan’s icy crust.
Data of the tidal fluxes on Titan by the Cassini spacecraft now suggest that there is a liquid ocean below Titan’s icy crust.
The team’s analyses suggest that the surface of the moon can rise and fall by up to 10 metres during each orbit, says Iess. That degree of warpage suggests that Titan’s interior is relatively deformable, the team reports today in Science1. Several models of the moon’s internal structure suggest such flexibility — including a model in which the moon is solid but soft and squishy throughout. But the researchers contend that the most likely model of Titan is one in which an icy shell dozens of kilometres thick floats atop a global ocean. The team’s findings, together with the results of previous studies, hint that Titan’s ocean may lie no more than 100 km below the moon’s surface.
Data of the tidal fluxes on Titan by the Cassini spacecraft now suggest that there is a liquid ocean below Titan’s icy crust.
The team’s analyses suggest that the surface of the moon can rise and fall by up to 10 metres during each orbit, says Iess. That degree of warpage suggests that Titan’s interior is relatively deformable, the team reports today in Science1. Several models of the moon’s internal structure suggest such flexibility — including a model in which the moon is solid but soft and squishy throughout. But the researchers contend that the most likely model of Titan is one in which an icy shell dozens of kilometres thick floats atop a global ocean. The team’s findings, together with the results of previous studies, hint that Titan’s ocean may lie no more than 100 km below the moon’s surface.