Chandrayaan-3’s Vikram lander separates from its propulsion module; Luna-25 in lunar orbit


Click for interactive map.

The two probes aiming to land in the high southern latitudes of the Moon in the next week are now both in lunar orbit and preparing for their planned landings.

First India’s Chandrayaan-3: With its propulsion module having completed the job of getting Chandrayaan-3 from Earth to lunar orbit, the Vikram lander today separated from that module in preparation for firing its own engines on August 23, 2023 and landing on the Moon.

Vikram needs to make several orbital adjustments before that landing attempt.

Second, Russia’s Luna-25 probe entered lunar orbit yesterday, where it will spend the next few days making its own orbital adjustments before attempting its landing on August 21st.

Vikram carries a small rover, Pragyan. Luna-25 is only a lander, though it has a scoop and will do analysis of the lunar soil below it. Neither is landing “near the south pole”, as most news sources are saying. They are landing at latitudes comparable to landing in the Arctic on Earth, on the northern coast of Alaska. As such, neither will find out anything about the question of remnant ice in south pole’s permanently shadowed regions.

An avalanche in the West Virginia of Mars

An avalanche in the West Virginia of Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, and reduced to post here, was taken on June 27, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

I have cropped it to focus on this one hill, about 900 feet high (though the elevation data from MRO is somewhat uncertain at this resolution), because of that major landslide on its northern slopes. At some point in the past a major piece of the exposed bedrock at the top broke off and slide about halfway down the mountain, almost as a unit, settling on the alluvial fill that comprises the bottom half of the hill’s flanks.

The bedrock surrounding the peak is also of interest because of its gullies, all of which were created by downward flowing material. Was it ice? Water? Sand? Or maybe a combination of two or three? If water or ice was involved it was a very long time ago, as this location is in the dry equatorial regions of Mars. There is little known near-surface ice here.
» Read more

Scientists discover in Alaska the largest dinosaur track site in U.S.

New dinosaur track site in Alaska
Click for original image.

Paleontologists have discovered in Alaska a new dinosaur track site that appears to contain numerous exposed tracks on what is now a series of vertical walls covering an area larger than a football field.

The picture to the right shows the entire site. The darker flat walls that appear to be dimpled are the track sites, with the dimples the actual tracks.

Researchers at the University of Alaska Fairbanks made the discovery following a seven-hour hike into the Denali National Park and Preserve, and it is now the home of the largest known single dinosaur track site in the US state.

Like a geological triple-decker (or more) sandwich, the 20-story-high structure, pushed vertical due to tectonic plate convergence, reveals a cliff face of layer upon layer of preserved prints throughout time. “It’s not just one level of rock with tracks on it,” said Dustin Stewart, the paper’s lead author and a former UAF graduate student. “It is a sequence through time. Up until now, Denali had other track sites that are known, but nothing of this magnitude.”

The scientists think these now vertical walls, when horizontal in the past, marked a major water-hole location visited by numerous dinosaurs and other species.

Chandrayaan-3 reaches final lunar orbit for landing


Click for interactive map.

India’s Chandrayaan-3 spacecraft completed its final lunar orbital engine burn today, placing it in the correct orbit to release the lander Vikram, carrying the Pragyan rover.

The release is scheduled for tomorrow, with the landing targeting August 23, 2023. This will be India’s second attempt to softland an unmanned probe on the Moon. The Vikram lander of Chandrayaan-2 failed in 2019 during its final engine burn above the surface, crashing thereafter. Engineers at India’s space agency ISRO spent several years upgrading that lander to better insure this new attempt would succeed.

The lander has been given more ability to manoeuvre during the descent, the mission allows for a bigger 4 km x 2.4 km area for landing, more sensors have been added, one of the thrusters has been removed, and the legs of the lander have been made sturdier to allow for landing even at slightly higher velocity. More solar panels have also been added to ensure that the mission can go on even if the lander does not face the sun. More tests to see the capability of the lander in different situations were carried out to make Chandrayaan-3 more resilient.

Both Vikram and Russia’s Luna-25 lander, scheduled for touchdown on August 21, will land in the high southern latitudes of the Moon, at about 70 degrees. They are not going to the Moon’s south pole, as many news reports claim.

The impact that almost cracked Mars open

An irregular pit chain on Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on June 25, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label an “irregular pit chain,” made up of a series of depressions scattered along a line that extends more than sixty miles to the northeast and to the southwest, beyond the edges of this high resolution close-up.

The chain likely indicates the existence of a fault line, or crack that created a void underground in which surface material is sinking. What makes this crack or fault line significant is how it and other similar fissures or cracks map across the Martian surface, extending for thousands of miles far beyond this particular pit chain and covering almost half the planet. In aggregate they imply the occurrence of past geological events so stupendous they are difficult to comprehend.
» Read more

Ingenuity’s 55th flight completed

Overview map
Click for interactive map.

The Ingenuity engineering team today updated the helicopter’s flight log, showing that the 55th flight occurred on August 12, 2023, one day later than originally planned, and flew 881 feet for 143 seconds, 61 feet and 9 seconds longer than planned.

The overview map above shows the present locations of both Perseverance and Ingenuity. The green dot marks Ingenuity’s new position, while the blue dot marks where Perseverance presently sits in Jezero Crater. Based on this map, the main goal of the flight was apparently to fly Ingenuity over a route that Perseverance will likely use to return to its planned route, as indicated by the red dotted line.

Webb confirms galaxy as one of the earliest known in the universe

The uncertainty of science: Using the spectroscopic instrument on the Webb Space Telescope, scientists have confirmed that one of the first galaxies found by Webb, dubbed Maisie’s Galaxy after the daughter of one scientist, is one of the earliest known in the universe, existing only 390 million years after when cosmologies say the Big Bang happened.

The data also showed that another one of these early galaxies spotted by Webb did not exist 250 million years after the Big Bang, but one billion years after, a date that better fits the theories about the early universe, based on the nature of this galaxy.

It turns out that hot gas in CEERS-93316 was emitting so much light in a few narrow frequency bands associated with oxygen and hydrogen that it made the galaxy appear much bluer than it really was. That blue cast mimicked the signature Finkelstein and others expected to see in very early galaxies. This is due to a quirk of the photometric method that happens only for objects with redshifts of about 4.9. Finkelstein says this was a case of bad luck. “This was a kind of weird case,” Finkelstein said. “Of the many tens of high redshift candidates that have been observed spectroscopically, this is the only instance of the true redshift being much less than our initial guess.”

Not only does this galaxy appear unnaturally blue, it also is much brighter than our current models predict for galaxies that formed so early in the universe. “It would have been really challenging to explain how the universe could create such a massive galaxy so soon,” Finkelstein said. “So, I think this was probably always the most likely outcome, because it was so extreme, so bright, at such an apparent high redshift.”

This science team is presently using Webb’s spectroscope to study ten early galaxies in order to better determine their age. Expect more results momentarily.

Intuitive Machines sets mid-November launch date for its Nova-C lunar lander


Click for interactive map.

Intuitive Machines announced yesterday that the launch of its lunar lander, Nova-C, is now targeting a November 15-20, 2023 window, lifting off on a SpaceX Falcon 9 rocket.

The yellow dot on the map to the right indicates the landing site, Malapert A, in the southern latitudes of the Moon. The white cross indicates the south pole.

The lander had originally planned to launch in 2021, but delays in construction pushed the launch back two years. A second company, Astrobotics, has its own lander, Peregrine, that though also delayed two years, has been ready to launch since early this year. It won’t launch until the end of this year at the earliest, however, due to delays in readying its rocket, ULA’s Vulcan on its first flight.

Both India’s Chandrayaan-3 and Russia’s Luna-3 are right now on their way to the Moon, with each planning a landing next week.

China makes available to the international community Chang’e-5’s lunar samples

China on August 2, 2023 announced that it is now allowing scientists from all nations to apply for access to the lunar samples brought back to Earth by its 2020 Chang’e-5 mission to the Moon.

The announcement outlined very specific rules for the loan of the samples, including requirements that if any part of a sample needs to be destroyed to study it that action be videotaped in detail. Samples loaned for research are for one year periods only, though this can be extended.

The rules also allow two month loans for the use of samples in public display, such as at a museum.

In both cases China will closely supervise the research and retain the right to recall the samples at any time if it doesn’t approve of what the borrower is doing.

U.S. law forbids our government officials or agencies from working with China, so don’t expect NASA or its scientists to apply for these samples. However, the law doesn’t apply to independent scientists, though serious state department regulations would apply. I therefore doubt many American scientists will apply for any samples. It would carry too many risks to their other research.

Chandrayaan-3 completes next-to-last orbital maneuver before releasing Vikram lander


Click for interactive map.

According to India’s ISRO space agency, its Chandrayaan-3 spacecraft has successfully completed the next-to-last orbital maneuver burn before releasing Vikram lander, lowering the spacecraft’s orbit around the Moon to 150 by 177 kilometers.

Today’s maneuver can be considered the second last vital maneuver. The one that takes place on August 16, will set the course for the Vikram lander.

Based on how today’s and August 16’s manoeuvres are executed, ISRO will get to decide where the Vikram lander touches down, among three predesignated spots on the Moon’s surface.

It had been my understanding that the landing zone was as indicated by the red dot on the map to the right. It might be instead that was only one of three potential landing sites. If so, I will update the map when more data is released.

The flat and mostly featureless flood lava plains of Mars

The flat and mostly featureless lava plains of Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on July 3, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Dubbed a “terrain sample” by the camera team, it was likely taken not as part of any scientist’s specific research program but to fill a gap in the camera’s schedule in order to maintain its proper temperature. When the camera team needs to do this they try to pick something of interest that is below during that gap.

In this case MRO was over the vast flood lava plains of Mars where for many hundreds of miles the only features are small variations produced from different overlapping lava flood events. The layers of lava in this region in fact appear so thick that there are relatively few places where the older topography still sticks up through the lava. In the case of this picture, the ridges might indicate such buried topography, but they also might simply be dikes of lava, pushed up through fissures from underground.
» Read more

Scientists: Saturn has rainstorms of ammonia lasting hundreds of years

Using radio telescope data of Saturn scientists now believe that the big storm first detected in 2011 produced rainstorms of ammonia which are expected to last hundreds of years.

As reported in the new study, de Pater, Li and UC Berkeley graduate student Chris Moeckel found something surprising in the radio emissions from the planet: anomalies in the concentration of ammonia gas in the atmosphere, which they connected to the past occurrences of megastorms in the planet’s northern hemisphere.

According to the team, the concentration of ammonia is lower at midaltitudes, just below the uppermost ammonia-ice cloud layer, but has become enriched at lower altitudes, 100 to 200 kilometers deeper in the atmosphere. They believe that the ammonia is being transported from the upper to the lower atmosphere via the processes of precipitation and reevaporation. What’s more, that effect can last for hundreds of years. [emphasis mine]

In other words, Saturn has an ammonia cycle similar to the water cycle on Earth.

Need I add that this study carries great uncertainties, and that the amount of data about Saturn’s interior and atmosphere is sparse, at best?

Russia launches Luna-25 to the Moon


Click for interactive map.

After almost two decades of development, Russia today used its Soyuz-2 rocket to launch Luna-25, its first lander to the Moon since the 1970s.

The link is cued to the live stream, just prior to launch. It will take several days to get to the Moon and enter orbit, make some orbital adjustments, then land in Boguslawsky crater, as shown on the map to the right. It is likely its landing will occur before India’s Chandrayaan-3 lands on August 23rd but not certain, depending on the adjustments needed in lunar orbit. Both could even land on the same day.

The leaders in the 2023 launch race:

54 SpaceX
33 China
11 Russia
6 Rocket Lab
6 India

American private enterprise still leads China in successful launches 62 to 33, and the entire world combined 62 to 55, while SpaceX by itself now trails the entire world (excluding American companies) 54 to 55.

The icy mountains close to where SpaceX hopes to land Starship on Mars

The icy mountains near Starship's landing site on Mars
Click for original image.

Cool image time! The photo to the right, rotated, cropped, reduced, and sharpened to post here, was taken on June 25, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Labeled as showing “flow features” by the scientists, it gives us a nice example of many of the different types of glacial and near-surface ice features seen routinely in the Martian latitudes above 30 degrees, especially in the northern hemisphere.

First there is the apron around the mound. Its layering suggests the many cycles that Mars’ climate has undergone as its rotational tilt swung back and forth from as low as 11 to as much as 60 degrees (it is presently at 25 degrees).

The mound, with those two depressions at its peak, suggests the possibility that it is some form of ice/mud volcano, similar to the suspected ice/mud volcanoes routinely seen in the northern lowland plains of Utopia Basin.
» Read more

Astronomers: Binary system creates tidal waves on star’s surface 3x larger than our own Sun

Tidal waves on star's surface

Based on computer simulations, astronomers believe that the monthly light changes in a binary star system are partly caused by gigantic tidal waves on the surface of the system’s larger star, waves that are three times higher than the diameter of our own Sun.

The larger star in the system is nearly 35 times the mass of the Sun and, together with its smaller companion star, is officially designated MACHO 80.7443.1718 — not because of any stellar brawn, but because the system’s brightness changes were first recorded by the MACHO Project in the 1990s, which sought signs of dark matter in our galaxy.

Most heartbeat stars vary in brightness only by about 0.1%, but MACHO 80.7443.1718 jumped out to astronomers because of its unprecedentedly dramatic brightness swings, up and down by 20%. “We don’t know of any other heartbeat star that varies this wildly,” says MacLeod.

To unravel the mystery, MacLeod created a computer model of MACHO 80.7443.1718. His model captured how the interacting gravity of the two stars generates massive tides in the bigger star. The resulting tidal waves rise to about a fifth of the behemoth star’s radius, which equates to waves about as tall as three Suns stacked on top of each other, or roughly 2.7 million miles high.

The image on the right is a screen capture from the computer simulation. The bulges on the right side of the larger star are the hypothesized tidal waves.

Martian craters or volcanoes?

Martian craters or volcanoes?
Click for original image.

Cool image time! The picture to the right, cropped and reduced to post here, was taken on June 30, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The scientists label these features “cones” because many of the depressions sit on top of a mound or hill, suggesting some form of volcanic feature, either from erupting lava, ice, or mud.

Yet, are they volcanoes? Some or even many could instead be impact craters, created when a asteroid broke up during infall, creating a spray of bolides. Erosion of surrounding terrain can create what scientists call pedestal craters, but if all these craters were from an impact than all would either be pedestal craters, or not. Instead, we have a mix of some craters above and others level with the terrain.
» Read more

South Korea’s KARI space agency releases new images taken by its Danuri lunar orbiter

To celebrate the anniversary of its launch, South Korea’s KARI space agency today released new images taken by its Danuri lunar orbiter.

Images include views of Reiner Gamma, a so-called swirl, which features a localized magnetic field and marks a bright spot within the Oceanus Procellarum region. Another shows shadows inside Amundsen Crater, close to the lunar south pole and a potential landing site for NASA’s Artemis 3 mission, which is slated to put astronauts on the moon in late 2025.

Another southern feature captured by Danuri is Drygalski Crater, showing the central peak inside the impact crater.

Scientists repeat fusion power experiment that produced more energy than spent

For the second time ever, scientists have successfully produced more energy from a fusion power experiment than they spent running the experiment.

Physicists have since the 1950s sought to harness the fusion reaction that powers the sun, but until December no group had been able to produce more energy from the reaction than it consumes — a condition also known as ignition.

Researchers at the federal Lawrence Livermore National Laboratory in California, who achieved ignition for the first time last year, repeated the breakthrough in an experiment on July 30 that produced a higher energy output than in December, according to three people with knowledge of the preliminary results.

Before you start buying stock in fusion power or believe the glowing praises coming from politicians and government bureaucrats, be warned: This experiment, which cost billions, was only able to produce enough power to run a household iron for about an hour. It will likely take many more billions and decades more of research to scale it up to a viable power system that has any hope of being practical.

Ingenuity completes 54th flight, a short hop after previous flight ended prematurely

Overview map
Click for interactive map.

According to the Ingenuity engineering team, Ingenuity has successfully completed its 54th flight on Mars, a short 25 second hop up and down that was done to try to figure out why the previous flight previous flight, #53, had ended prematurely.

Flight 53 was planned as a 136-second scouting flight dedicated to collecting imagery of the planet’s surface for the Perseverance Mars rover science team. The complicated flight profile included flying north 666 feet (203 meters) at an altitude of 16 feet (5 meters) and a speed of 5.6 mph (2.5 meters per second), then descending vertically to 8 feet (2.5 meters), where it would hover and obtain imagery of a rocky outcrop. Ingenuity would then climb straight up to 33 feet (10 meters) to allow its hazard divert system to initiate before descending vertically to touch down.

Instead, the helicopter executed the first half of its autonomous journey, flying north at an altitude of 16 feet (5 meters) for 466 feet (142 meters). Then a flight-contingency program was triggered, and Ingenuity automatically landed. The total flight time was 74 seconds.

This explains why, after the 53rd flight, the engineering team had not immediately added that flight to the helicopter’s flight log. That log is now updated to include both the 53rd and 54th flights, but the data from the 53rd flight was held back until after the 54th flight was completed.

The green dot in the overview map above shows Ingenuity’s present position, only a few feet to the west from its previous position shown here. The blue dot indicates Perseverance’s present position. The red dotted line indicates the planned route of the rover.

Curiosity under the shadow of a Martian mountain

Panorama showing Kukenan on August 8, 2023
Click for full resolution. For original images, go here and here.

Overview map
Click for interactive map

Another cool image to start the week! The panorama above was created using two navigation images taken by Curiosity on August 8, 2023. It looks almost due west at the dramatic western wall of 400-foot-high Kukenan butte.

The blue dot on the overview map to the right marks Curiosity’s present location. The yellow lines indicate approximately the area covered by the panorama above. The red dotted line indicates the rover’s planned route.

Recently JPL issued a press release touting the efforts of its engineers to overcome the very steep and rocky terrain that Curiosity is presently traversing, an effort that I have documented repeated in the past few months (see posts here and here). They had been trying to send Curiosity straight up the mountain, to no success, and finally decided to do what every hiker and trail-maker does routinely, do back and forth switchbacks to reduce the grade per step.

In June they headed slowly uphill going east. In July they turned back and worked their way uphill going west, heading back to the Jau crater complex to get a quick look at these craters, then turned again in August to head back east, slowly working uphill along the contour lines. As they do this the rover is moving closer and closer to Kukenan, the largest butte so far studied in the foothills of Mount Sharp.

This panorama is one of the best illustrations of the very complex geological history of Mars. Each layer signals a past cycle in Mars’ very cyclic history, created because of the red planet’s wide swings of rotational tilt over time. Once underground, these layers have become exposed because erosion over the eons has slowly removed the material that once buried it, leaving the butte behind.

A ghostly bullseye galaxy

A ghostly bullseye
Click for original image.

A cool image to start the week! The picture to the right, cropped and reduced to post here, was taken by the Hubble Space Telescope as part of a survey scientists are doing using Hubble, attempting to get high resolution images of every galaxy within about 30 million light years of the Milky Way. Prior to this census Hubble had covered about 75% of these galaxies. This particular galaxy is called a lenticular galaxy.

Lenticular galaxies like NGC 6684 (lenticular means lens-shaped) possess a large disc but lack the prominent spiral arms of galaxies like the Andromeda Galaxy. This leaves them somewhere between elliptical galaxies and spiral galaxies, and lends these galaxies a diffuse, ghostly experience. NGC 6684 also lacks the dark dust lanes that thread through other galaxies, adding to its spectral, insubstantial appearance.

The unknown is whether this is the state of a galaxy prior to becoming a spiral, or it is what it looks like as it transitions from a spiral to an elliptical. This particular galaxy is likely the latter, as it lacks the dust, but this does not have to be the rule.

ISRO releases first images of the Moon from Chandrayaan-3

The Moon as seen by Chandrayaan-3

India’s space agency ISRO yesterday released the first images taken of the Moon by Chandrayaan-3, soon after entering lunar orbit.

The picture to the right is a screen capture from the short movie the agency compiled from those images, available at the link. The pictures were taken on August 5th, during the engine burn that put the spacecraft into lunar orbit. A solar panel can be seen on the left, with the cratered lunar surface to the right.

Chandrayaan-3 is presently undergoing a series of engine burns to lower its orbit in preparation for a planned August 23rd lunar landing in the high southern latitudes of the Moon.

Chandrayaan-3 enters lunar orbit


Click for interactive map.

India’s Chandrayaan-3 spacecraft today successfully entered lunar orbit, where it will spend the next week or so slowly lowering its orbit in preparation for a landing attempt by its Vikram lander on August 23rd.

Chandrayaan-3 began a roughly 30-minute burn around 9:30 a.m. Eastern, seeing the spacecraft enter an elliptical lunar orbit, the Indian Space Research Organization (ISRO) stated via social media. “MOX, ISTRAC, this is Chandrayaan-3. I am feeling lunar gravity,” ISRO Tweeted. “A retro-burning at the Perilune was commanded from the Mission Operations Complex (MOX), ISTRAC, Bengaluru.”

The spacecraft will gradually alter its orbit with a burn to reduce apolune Sunday, Aug. 6. It will settle into a 100-kilometer-altitude, circular polar orbit on Aug. 17. From here, the Vikram lander will separate from the mission’s propulsion module and enter a 35 x 100-km orbit in preparation for landing.

If the landing attempt is successful, the Pragyam rover will roll off Vikram to operate for about two weeks on the lunar surface in the high southern latitudes of the Moon.

Meanwhile, the Russian lander Luna-25 will launch on August 10th. Since the rocket that launches it and engines it carries are larger than that used by Chandrayaan-3, it will likely land in Boguslawsky crater, before Vikram touches down nearby.

Engineers regain full control over Voyager 2

A longshot effort by engineers has succeeded in re-establishing full communications with Voyager 2, launched in 1977 and flying outward at the edge of the solar system.

“The Deep Space Network used the highest-power transmitter to send the command (the 100-kw S-band uplink from the Canberra site) and timed it to be sent during the best conditions during the antenna tracking pass in order to maximize possible receipt of the command by the spacecraft,” Voyager project manager Suzanne Dodd told AFP. This so-called “interstellar shout” required 18.5 hours traveling at light speed to reach Voyager, and it took 37 hours for mission controllers to learn whether the command worked, JPL said in a statement.

The probe began returning science and telemetry data at 12:29 am Eastern Time on August 4, “indicating it is operating normally and that it remains on its expected trajectory,” added JPL.

Based on a weak signal received earlier, engineers were confident that the spacecraft was functioning in good order despite the loss in communications, and would automatically re-orient itself properly when it did an automatic reset in October. This attempt however fixed things now.

Regardless, the spacecraft probably only has a few more more years of operations before its nuclear powered source finally runs out sometime after 2025.

A hiking paradise on Mars!

A hiking paradise on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, sharpened, and annotated to post here, was taken on May 21, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows one of Mars’ more impressive mountains with the Sun somewhat low in the western sky, resulting in the long dark shadows on the eastern slopes.

The line is my quick attempt to mark the obvious route that would be taken along that ridge line to get from the bottom to the top. This could be a hiking trail, or a road. In either case, the elevation gain from the bottom of the ridge to the plateau on top would be about 3,900 feet in about a mile and a half, very steep for Earth — at approximately a 26 degree grade — but probably quite doable in the one-third Martian gravity.

The lower end of my proposed route however is hardly the bottom of the mountain. The slope, now alluvial fill made up of dust and debris from above, continues downhill for another 5,400 feet. All told, from top to bottom the elevation gain is about 9,300 feet over 8.5 miles.
» Read more

Scientists release infrared image of the Ring nebula, taken by Webb

The Ring Nebula, in false color by Webb
Click for original image.

Scientists yesterday released the first false-color infrared image of the Ring nebula taken by the Webb Telescope. That image, cropped to post here, is to the right. From the press release, which is heavy with platitudes but little information:

Approximately 2,600 lightyears away from Earth, the nebula was born from a dying star that expelled its outer layers into space. What makes these nebulae truly breath-taking is their variety of shapes and patterns, that often include delicate, glowing rings, expanding bubbles or intricate, wispy clouds. These patterns are the consequence of the complex interplay of different physical processes that are not well understood yet. Light from the hot central star now illuminates these layers.

Just like fireworks, different chemical elements in the nebula emit light of specific colours. This then results in exquisite and colourful objects, and furthermore allows astronomers to study the chemical evolution of these objects in detail.

It appears this image was produced using Webb’s near infrared instrument. Further data from its mid-infrared instrument has not yet been released. For a Hubble image of the Ring Nebula, in optical light that the human eye sees, go here.

NASA agrees to let Axiom fly a fourth private manned mission to ISS

NASA and Axiom have now signed a new agreement allowing Axiom to fly a fourth private manned mission to ISS, tentatively scheduled for no earlier than August 2024.

Through the mission-specific order, Axiom Space is obtaining from NASA crew supplies, cargo delivery to space, storage, and in-orbit resources for daily use. The order also accommodates up to seven contingency days aboard the space station. This mission is subject to NASA’s pricing policy for the services that are above space station baseline capabilities.

The order also identifies capabilities NASA may obtain from Axiom Space, including the return of scientific samples that must be kept cold and other cargo, and the capability to use the private astronaut mission commander’s time to complete NASA science or perform tasks for the agency.

The company has already hired SpaceX to provide the transportation to and from ISS, using its Falcon 9 rocket and one of its fleet of four manned Dragon capsules.

Despite good first images from Euclid, the orbiting telescope has a problem

Even though the first light images from Euclid have been sharp and exactly what astronomers want, the orbiting telescope designed to make a 3D map of billions of galaxies has an issue that will likely put some limits to that map.

When the telescope started booting up, ESA observers were concerned by the appearance of light markings on the first images relayed to Earth. This, it confirmed, was due to sunlight filtering into the telescope, “probably through a tiny gap”.

A correction to Euclid’s position was able to offset this issue. It means that while the ESA is confident Euclid will be fine to proceed with its mapping mission, particular orientations for the telescope may not be possible.

A limitation like this means that the telescope will not being able to look in some directions and get mapping images. Thus, the overall map will have gaps, though it appears at this moment that the scientists think those gaps will not seriously impact the telescope’s overall work. We shall see.

The dry and mountainous terrain west of Jezero Crater

The dry and mountainous terrain west of Jezero Crater
Click for original image.

Since my earlier update today about Perseverance and Ingenuity mentioned the very diverse and strange geology known to exist west of Jezero Crater and where the rover is eventually headed, I thought it worthwhile to post another cool image of that terrain.

The picture to the right, rotated, cropped, reduced and sharpened to post here, was taken on May 22, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Labeled a “terrain sample” image, the location was likely chosen by the camera team in order to fill a gap in the camera’s schedule so that they can maintain its proper temperature. Having a gap that put the spacecraft over this region to the west of Jezero was however a great opportunity to get another look at this rocky, mountainous, and very parched terrain, located in Mars’ very dry equatorial regions.
» Read more

Perseverance snaps new close-up of Ingenuity

Overview map
Click for interactive map.

Ingenuity as seen by Perseverance on August 2, 2023
Ingenuity as seen by Perseverance on August 2, 2023.
Click for original image.

Cool image time! With Perseverance and Ingenuity in the past week getting close together for the first time in months, the Perseverance team naturally turned its high resolution mast cameras at the helicopter. The picture to the right, cropped, reduced, and sharpened to post here, was taken on August 2, 2023 by the rover’s left mast camera, showing Ingenuity only about two hundred feet away.

The blue dot on the overview map above shows Perseverance’s present location, with the green dot marking Ingenuity’s. The picture to the right is therefore looking almost due south. The red dotted line indicates the rover’s planned route, moving towards Neretva Vallis, the gap in the rim of Jezero Crater from which the delta had flowed, eons ago. The rover’s goal is to eventually enter that gap and explore the very diverse and strange geology known to exist outside the crater to the west.

We should also expect even better images of Ingenuity in the next week. Its 54th flight is scheduled for today, in which the engineering team wants to send the helicopter on a simple straight up and down hop of sixteen feet in order to better “localize” the helicopter. With Perseverance less than two hundred feet away, its cameras should be able to assemble a great movie of that flight.

1 24 25 26 27 28 271