Researchers confirm it was a Chinese rocket stage that impacted Moon in 2022

Impact, before and after
The crash site is the double crater in the
lower image.

Researchers have now confirmed that the unknown rocket stage that impacted the Moon in 2022 was from a Chinese rocket, a Long March 3B that launched China’s Chang’e-5 lunar sample return mission in November 2020.

“In this paper, we present a trajectory and spectroscopic analysis using ground-based telescope observations to show conclusively that WE0913A is the Long March 3C rocket body (R/B) from the Chang’e 5-T1 mission,” the researchers, led by Tanner Campbell, a doctoral student in the UA’s Department of Aerospace and Mechanical Engineering, wrote in a study that came out Thursday (Nov. 16) in the Planetary Science Journal. These two lines of evidence — how the object was moving and what it was made of — leave little doubt about WE0913A’s provenance, Campbell and his colleagues report.

The data, combined with the unusual double crater caused by the impact, also suggests that this stage had additional unknown equipment at its top, matching the mass of its engines at the bottom. Since the Chinese continue to deny it was their stage and have said nothing about it, we have no idea what that extra equipment might have been.

Jupiter’s Great Red Spot continues to shrink, possibly to its smallest size ever measured

Jupiter, as seen by Hubble in 2020
A 2020 Hubble picture of Jupiter.
Click for full image.

Long term data from numerous observatories shows that the Great Red Spot on Jupiter, the largest and longest lasting storm in the solar system, has been continuously shrinking for decades, and appears approaching this year its smallest size ever measured.

Despite so many factors working to keep it “alive” the Spot may be in need of life support. It’s been shrinking for decades. In 2012 the rate of shrinkage abruptly accelerated, something many amateur observers have commented on since that time. Several years later, while still shrinking in diameter, it expanded in latitude becoming more circular. Now it’s narrowed again and continues to diminish in both axes. This observing season I’ve been struck by the Spot’s unusually small size. That, along with its pale pink color and turbulent environment, have made it less obvious than ever.

…Using the WinJUPOS program and one of his recent high-resolution images, Peach measured the Great Red Spot’s diameter on November 6, 2023, at 12,500 kilometers or about 7,770 miles across. If confirmed it would make this season’s GRS not only smaller than the Earth (12,756 kilometers or 7,926 miles across) but the smallest size in observational history. A British Astronomical Association Jupiter section bulletin on October 30th described it as “the smallest it has ever been.” That’s a far cry from the late 1800s when the Spot ballooned to 41,000 kilometers (25,500 miles) — big enough to swallow three Earths with room to spare. Now it can barely contain one!

No one knows if this shrinkage is merely a normal long term fluctuation, or a sign that this many-centuries-old storm is finally dissippating. When it comes to the solar system’s gas giants, their size and long orbits make any firm conclusion difficult in only a few centuries of observation. To understand them properly will likely require thousands of years of observations, covering many orbits and seasons.

China launches ocean observation satellite

China today successfully launched what it claimed was the first of a new generation of ocean observation satellites, its Long March 2C rocket lifting off from its Jiuquan spaceport in northwest China.

No word on where the rocket’s lower stages, which use toxic hypergolic fuels, crashed inside China.

The leaders in the 2023 launch race:

83 SpaceX
52 China
14 Russia
7 Rocket Lab
7 India

American private enterprise still leads China 95 to 52 in successful launches, and the entire world combined 95 to 81. SpaceX by itself is still leads the rest of the world (excluding American companies) 83 to 81.

Lava/ice eruptions on Mars

Lava/ice eruptions on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on August 1, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Labeled by the science team as showing “possible lava-ice interaction,” the photo features some pimply-looking mounds that, though round like craters, sit above the surrounding landscape like small volcanoes.

That these are likely not ancient pedestal impact craters that now sit higher because their material is packed and can resist erosion is illustrated by the bridge-like mound in the lower right. This mound was likely once solid, but its north and south sections have disappeared, either by erosion or sublimation. If formed by an impact the mound would have had a depression in its top center, and would have only eroded outside the rim.
» Read more

Gamma ray burst 1.9 billion light years away was powerful enough to affect Earth’s atmosphere

One of the most powerful gamma ray bursts (GRBs) ever detected was so powerful that despite occurring about 1.9 billion light years away it was powerful enough to affect Earth’s atmosphere.

On 9 October 2022, for 7 minutes, high energy photons from a gigantic explosion 1.9 billion light-years away toasted one side of Earth as never before observed. The event, called a gamma ray burst (GRB), was 70 times brighter than the previous record holder. But what astronomers dub the “BOAT”—the brightest of all time—did more than provide a light show spanning the electromagnetic spectrum. It also ionized atoms across the ionosphere, which spans from 50 to 1000 kilometers in altitude, researchers say. The findings highlight the faint but real risk of a closer burst destroying Earth’s protective ozone layer.

“It was such a massive event, it affected all levels of the atmosphere,” says solar physicist Laura Hayes of the European Space Agency (ESA).

None of these consequences were harmful or even noticeable to any life on Earth, but the data proved without question that a GRB close by within the Milky Way could have been the cause of one or more of the past extinction events. It also proved that a future such nearby explosion could do the same again.

At present astronomers think that GRBs are caused either by the collapse of a massive star into a black hole, during a supernovae event, or by the merger of two neutron stars. Neither conclusion is proved as yet, though the evidence has eliminated most other theories.

For astronomers this GRB was significant because its strength allowed many different telescopes and detectors to record it, in many different wavelengths. Having such a wealth of information helps them better figure out what happened when the burst occurred.

Scientists: More evidence cosmic rays come from nearby supernova remnants

The uncertainty of science: According to high energy data from an instrument on ISS, astronomers found more evidence that the cosmic rays that enter our solar system likely come from nearby supernova remnants.

Current theory posits that the aftermath of supernovae (exploding stars), called supernova remnants, produce these high energy electrons, which are a specific type of cosmic ray. Electrons lose energy very quickly after leaving their source, so the rare electrons arriving at CALET with high energy are believed to originate in supernova remnants that are relatively nearby (on a cosmic scale), Cannady explains.

The study’s results are “a strong indicator that the paradigm that we have for understanding these high-energy electrons—that they come from supernova remnants and that they are accelerated the way that we think they are—is correct,” Cannady says. The findings “give insight into what’s going on in these supernova remnants, and offer a way to understand the galaxy and these sources in the galaxy better.”

The results however do not prove this. Nor do they eliminate the possibility that cosmic rays might also come from other sources outside our galaxy. At present the data is simply too uncertain.

Intuitive Machines will attempt to launch 3 lunar landing missions in 2024

South Pole of Moon with landing sites

According to the company’s CEO, Intuitive Machines is pushing to fly two more Nova-C lunar landing missions next year after its first is launched by SpaceX on January 12th and hopefully lands successfully near the Moon’s south pole on January 19th.

Intuitive Machines is working on two more Nova-C landers for its IM-2 and IM-3 missions, also carrying NASA CLPS payloads. The company has not announced launch dates for those missions, but Altemus said he hoped both could take place by the end of 2024.

“We are planning three missions in 2024,” he said, which will depend in part on NASA’s requirements as well as orbital dynamics. Landings at the south polar region of the moon, the target for IM-2, are linked to “seasons” where lighting conditions are optimal for lander operations. IM-3, he said, would happen “a few months” after IM-2.

Though Nova-C will launch after Astrobotic’s Peregrine lander (launching on ULA’s Vulcan rocket), it will get to the Moon quickly, and will attempt its landing first. If successfully it will therefore be the first private payload to do so.

The company’s ambitions for 2024 are laudable, but depend so entirely on everything going perfectly it will not be surprising if they do not pan out. Nor will it reflect badly on the company if just one mission flies in 2024. Landing a robot on another world is hard. For private companies to do it is harder.

The caldera wall of a Martian giant volcano

The caldera wall of Pavonis Mons
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and enhanced to post here, was taken on June 8, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the top half of the northwestern interior wall of the central caldera of Pavonis Mons, the center volcano in the string of three giant volcanos found in Mars’ equatorial regions.

The elevation change from the top to the bottom of this picture is about 7,000 feet, though this covers only half the distance down to the floor of the caldera. The picture was taken as part of a survey of this caldera wall.

Volcanic activity here is thought to have ended more than a billion years ago. Thus we are looking at relatively old terrain that has had many eons to be reshaped since the last eruption.
» Read more

Curiosity looks back at Gale Crater one last time before month-long communications break

Looking back at Gale Crater
Click for image.

Overview map
Click for interactive map

Though the view has not changed much since early October, when I last posted a Curiosity navigation image looking out across Gale Crater from the present heights of Mount Sharp, today’s image above, taken on November 8, 2023, sol 4001 since the rover landed on Mars, signals the beginning of the monthlong solar conjunction, when all communications with Mars is blocked because the Sun has moved between the Earth and the Red Planet.

Solar conjunction occurs every two years, with this being the sixth conjunction experienced by Curiosity. It officially began on November 6th and is expected to end around November 29th. The picture above however was obtained two days into that conjuction, and is unusual in that it does not have the large drop-outs now seen in many other images taken then, both from Curiosity and Perseverance. We should expect there to be very few additional images before the end of November.

The blue dot in the overview map to the right shows Curiosity’s present position, with the yellow lines indicating roughly the area covered by the picture above. The crater rim is about 20 to 25 miles away, with the peak of Mount Sharp about the same distance away in the opposite direction. The rover has climbed about 2,500 feet, but it still sits about 13,000 feet below the mountain’s peak. Though the photo encompasses Curiosity’s entire route since landing, most of it is out of sight, the lower flanks of Mount Sharp blocking our view.

The strange craters in the high northern latitudes of Mars

The strange craters in the Martian northern lowlands
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and enhanced to post here, was taken on August 22, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). I have also inserted data from a July 28, 2008 context camera image into the blank strip that now exists in the center of high resolution camera images due to the failure of one sensor.

This photo is what the camera team calls a terrain sample, and was probably taken not as part of any specific request but to fill a gap in the camera’s schedule in order to maintain its proper temperature. When the camera team does this they try to find locations that either have not been observed in much detail previously or have interesting features. In this case the team accomplished both. The interesting features are the two pedestal craters, both surrounded by splash aprons. Neither has been observed in high resolution previously, and the context camera has only taken two pictures of this location in total.
» Read more

Strange meandering ridge amidst Martian glaciers

Overview map

Strange meandering ridge in glacier country

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on June 21, 2023 by the high resolution camera on Mars Reconnaissence Orbiter (MRO). Its focus is the meandering ridge in the center of the picture, which the scientists intentially describe vaguely as a “ridged flow-like feature”.

The elevation difference between the high and low points within the picture is about 500 feet, though most of that slope occurs in the lighter terrain on the right. The darker area where the ridge is located has no clear elevation trend, though there are hints of depressions and rises within it.

The yellow dot on the overview map above marks this location, deep within the chaos terrain dubbed Deuteronilus Mensae, on the western end of the 2,000 long northern mid-latitude strip I dub glacier country, because practially every image from there shows glacial features.

To underline this fact, the red and white dots mark previous cool images from 2020 and 2021, with the first showing an eroded glacier and the second glacial ice sheets.

The mesa to the east of this picture rises more than 6,000 feet to its peak, as indicated by the black dot. This is also the highest point for this entire grouping of mesas. All are surrounded by a single large apron of material, likely a mixture of alluvial fill and ice.

What however caused the narrow ridge in the picture above? Is it ice or bedrock? If ice why is it so different than the glacial material that seems to surround it? If bedrock, it suggests it is instead an ancient inverted channel created when that ridge was a canyon through which ice or water flowed, compacting the canyon floor. When the terrain around it eroded away it was more resistent and became a ridge instead.

I have no answer. The colors suggest the ridge is rock, not ice, but that is not conclusive.

Lucy: Dinkinesh’s moon is actually a contact binary

Dinkinesh's contact binary moon
Click for original image.

As more images have arrived from Lucy’s fly-by of Dinkinesh scientists have discovered that its moon is actually a contact binary.

The Lucy picture to the right, cropped, reduced and sharpened to post here, shows that contact binary on the right.

This image shows the asteroid Dinkinesh and its satellite as seen by the Lucy Long-Range Reconnaissance Imager (L’LORRI) as NASA’s Lucy Spacecraft departed the system. This image was taken at 1 p.m. EDT Nov. 1, 2023, about 6 minutes after closest approach, from a range of approximately 1,010 miles. From this perspective, the satellite is revealed to be a contact binary, the first time a contact binary has been seen orbiting another asteroid.

Data from the fly-by is still being downloaded.

The grand Valles Marineris of Mars

The grand canyon of Mars
Click for original image.

Time for another cool image of the grand canyon of Mars, Valles Marineris. The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on May 24, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a small section of the floor of this gigantic canyon, where orbital data has detected light-toned materials. From the caption:

Many of the Valles Marineris canyons, called chasmata, have kilometer-high, light-toned layered mounds made up of sulfate materials. Ius Chasma, near the western end of Valles Marineris, is an exception.

The light-toned deposits here are thinner and occur along both the floor and walls, as we see in this HiRISE image. Additionally, the sulfates are mixed with other minerals like clays and hydrated silica. Scientists are trying to use the combination of mineralogy, morphology, and stratigraphy to understand how the deposits formed in Ius Chasma and why they differ from those found elsewhere in Valles Marineris.

The picture however gives no sense of the monumental terrain that surrounds it.
» Read more

Japan delays asteroid mission due to its rocket problems

Japan’s space agency JAXA has decided to delay its Destiny+ mission to the asteroid Phaethon until 2025 due to the continuing problems getting its Epsilon-S rocket off the ground.

Epsilon-S is intended as an upgrade to Japan’s Epsilon rocket, but its development has been plagued by failures. In October ’22 there was a launch failure of Epsilon, and in July ’23 the second-stage solid-fueled motor of Epsilon-S exploded during a test.

Phaethon is the parent asteroid of the Geminid meteor shower that occurs each year in December. According to the original plan Destiny+ would have done its fly-by of the asteroid in 2029. No new arrival date has been announced.

Martian lava that buried a crater

Martian lava flow through crater
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on June 24, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a lava flow that cut through an older 2-mile-wide crater, mostly burying it as it burst through the crater’s southwest and northeast rims. From the caption:

A lava channel extends from the feature and continues 60 kilometers to the northeast, growing deeper along its path. The circular formation is likely an eroded impact crater whose walls have been breached by the lava as it surrounded the rim and then infilled the crater. Alternatively, it could represent the location of a volcanic vent that sourced some of the lavas that formed the channel.

» Read more

Galaxies within galaxies within galaxies

Galaxies within galaxies
Click for original image.

Time another cool galaxy image! The picture to the right, cropped, reduced, sharpened, and annotated to post here, was taken by the Hubble Space Telescope as part of a survey project of galaxies where past supernovae had occurred. From the caption:

The location of this faded supernova was observed as part of a study of multiple hydrogen-rich supernovae, also known as type II supernovae, in order to better understand the environments in which certain types of supernovae take place.

Though the picture’s resolution was reduced to post here, I have also included insets at the full released resolution of three of background galaxies, one of which (on the uppermost right) appears to have a second smaller galaxy either associated with it or is another background galaxy even farther away. Such background galaxies are always seen Hubble images, which starkly tell us that the universe is far vaster than we can imaging, with more stars than we can conceive.

The galaxy featured here is interesting in its own right. Though it appears to be a spiral galaxy, its arms are very indistinct, suggesting that is sits between that of an elliptical galaxy (no arms, just a cloud of stars) and a spiral (with well-defined arms).

Ingenuity completes very short 65th flight

Overview map
Click for interactive map.

Ingenuity yesterday completed a very short 48 second flight that shifted its position only slightly to the west, by about 23 feet. The distance, time, and highest elevation (33 feet) matched the flight plan exactly.

The green dot on the overview map above indicates its present position, with the blue dot marking Perseverance’s location. This particular flight was so short that it actually fits entirely within that green dot. Furthermore, the helicopter’s next flight, scheduled for today as well, is intended to also only reposition the helicopter, but even less so, moving only two feet or so sideways while rising only ten feet.

It appears the engineering team is preparing the helicopter for the upcoming solar conjunction, when the Sun will be between the Earth and Mars and no communications will be possible for several weeks. Such conjunctions occur about every two years, with this one beginning on November 6th and lasting until November 29th. Getting the helicopter in the right spot during that down time will increase the chances for regaining communications afterward. Since Perseverance acts as a relay station, Ingenuity must get placed in a spot where there is a direct line of communications, blocked by no objects or intevening rise in land.

Note that all the Martian rovers and orbiters are preparing for conjunction right now.

Mars geology that only makes sense by digging deeper

Not-so baffling Martian geology
Click for original image.

Today’s cool image is a perfect example of why nothing in science research should ever be taken at face value, without digging a bit deeper. The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on October 5, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

First an important technical point. Though the electronics unit for one of the camera’s color filters is still not working — causing a blank strip down the center of all black & white images, the camera team has gotten around this problem by inserting in that strip other color filter data, thus creating a complete image as you see to the right. This work-around means that MRO’s capabilities, though showing signs of age, will continue almost as good as before.

As for the image itself, when I first looked at it, I was baffled by the striking contrast between the mottled and rough ground in the lower left, and the almost featureless and smooth terrain everywhere else. Why this sudden transition? What could cause it? That inexplicable contrast demanded I post it as a cool image.
» Read more

Hubble snaps an ultra-violet view of Jupiter

Jupiter in ultra-violet

Cool image time! Using the Hubble Space Telescope, scientists have taken a false-color ultra-violet image of Jupiter. That picture is to the right, cropped, reduced and sharpened to post here.

This newly released image from the NASA Hubble Space Telescope shows the planet Jupiter in a color composite of ultraviolet wavelengths. Released in honor of Jupiter reaching opposition, which occurs when the planet and the Sun are in opposite sides of the sky, this view of the gas giant planet includes the iconic, massive storm called the “Great Red Spot.” Though the storm appears red to the human eye, in this ultraviolet image it appears darker because high altitude haze particles absorb light at these wavelengths. The reddish, wavy polar hazes are absorbing slightly less of this light due to differences in either particle size, composition, or altitude.

The data used to create this ultraviolet image is part of a Hubble proposal that looked at Jupiter’s stealthy superstorm system. The researchers plan to map deep water clouds using the Hubble data to define 3D cloud structures in Jupiter’s atmosphere.

By comparing this ultra-violet image with Hubble’s optical view as well as Webb’s infrared view, scientists can study Jupiter’s atmosphere much like meteologists study the Earth’s, using multi-wave satellite observations.

Lucy discovers second small asteroid orbiting Dinkinesh

Dinkinesh as seen by Lucy

During its November 1, 2023 fly-by of the asteroid Dinkinesh the asteroid probe Lucy surprisingly discovered that the asteroid was actually a binary, with a second smaller asteroid orbiting it.

The picture to the right, cropped, reduced, and sharpened to post here, was taken by Lucy’s camera within a minute of the probe’s closest approach of 270 miles. The second asteroid is partly blocked by Dinkinesh.

In the weeks prior to the spacecraft’s encounter with Dinkinesh, the Lucy team had wondered if Dinkinesh might be a binary system, given how Lucy’s instruments were seeing the asteroid’s brightness changing with time. The first images from the encounter removed all doubt. Dinkinesh is a close binary. From a preliminary analysis of the first available images, the team estimates that the larger body is approximately 0.5 miles (790 m) at its widest, while the smaller is about 0.15 miles (220 m) in size.

The nature of both asteroids appears to lie between a rubble pile (like Bennu) or a solid smooth rock (like Eros), suggesting we are now beginning to see aspects of the overall evolution of asteroids over time.

So far only a few images from this fly-by have been released. It will take a week for the rest of the data from the fly-by to beamed back to Earth. However, these images prove that the prime purpose of this fly-by was successful, proving that Lucy is operating as planned, able to point, manuever, and obtain its data during such a fly-by. When it arrives in the Trojan asteroids in 2027 it will be able to do its prime mission.

During landing Shenzhou’s single parachute appeared damaged

A closer look at imagery during the descent by parachute of China’s manned Shenzhou capsule, bringing three astronauts back from Tiangong-3 after a five month mission on October 31, 2023, shows that the capsule’s single parachute had a ripped hole.

In some of the footage, a patch of blue sky can be seen through the red-and-white-banded parachute. Inside the capsule were Shenzhou 16 mission commander Jing Haipeng and crewmates Zhu Yangzhu and Gui Haichao — the latter pair returning to Earth after their first mission to space.

Such a sizable hole, which was visible before a white cloud of vented propellant left the Shenzhou capsule, has not been reported during earlier missions. It did not, however, seem to affect operations.

The landing however was very rough, with the capsule tumbling several times after hitting the ground.

Considering that China presently as three astronauts on Tiangong-3 that have to come home in their own Shenzhou capsule, using this same parachute system, finding out what happened seems imperative. Developing its next generation larger capsule, which will return using three parachutes, also appears essential.

A seasonal map of the cloudy parts of Mars

Seasonal map of the cloudy parts of Mars
Click for original image.

Though Mars’ very thin atmosphere (1/thousandth that of Earth) is generally clear, it does have clouds that come and go. A project begun in 2022 using citizen scientists to identify these clouds and the seasons they appear the most, dubbed Cloudspotting on Mars, has now published its first paper, available here.

The graph to the left, Figure 9 in the paper, shows two seasonal Mars maps, one indicating the daytime seasonal frequency of clouds and the other their nightime frequency. From the paper:

The seasonal evolution of all clouds as a function of latitude for both daytime and nighttime are shown in Fig. 9. During the clear season until [mid-summer in the northern hemisphere] … there are several regions where clouds occur frequently: in the equatorial region (annotated as 1), at mid-latitudes (2), in the southern polar region (3), and to a lesser extent in the northern polar region [at the start of summer]. From [late fall to mid-autumn in the north], daytime clouds occur primarily at mid-latitudes, but are observed at nearly all latitudes between 70°S and 60°N (4). At night, there is one broad population from 30°S to 30°N (clouds are more frequent in the equatorial region at night), but [in autumn], clouds occur frequently between 30°N and 50°N as well. [In mid-spring] the number of observed nighttime clouds increases in the southern hemisphere, especially near 50°S. There is a strong decrease in the number of peaks just before [the late northern autumn and the late southern sping] at nearly all latitudes except around 50°S and 20°N at night. [Once northern winter arrives], clouds are observed between about 60°S and 60°N as well as both polar regions, although nighttime clouds between 0°N and 30°N occur relatively less frequently.

The low-latitude clouds during the clear season (1), which are observed more frequently at night, occur at high altitudes, 65–80 km during the day and 55–70 km at night; this is the aphelion equatorial mesospheric cloud population studied in depth by Slipski et al. (2022) and in which previous observations have spectrally confirmed CO2-ice.

Martian seasons

The bracketed words indicating seasons above replace the longitudal numbers the scientists use to indicate the seasons, and are used on these two graphs. The figure to the right shows what the longitude numbers represent in the graphs’ X-axis.

The project continues if any of my readers want to join in.

Sunspot update: October activity drops almost to predicted levels

NOAA today posted its updated monthly graph tracking the number of sunspots on the Sun’s Earth-facing hemisphere. As I do every month, I have posted this graph below, with several additional details to provide some larger context.

In October the sunspot count dropped so much from the activity in September that the total count was for the first time since the middle of 2021 actually very close to the predicted numbers first put forth by NOAA’s solar science panel in April 2020.

» Read more

Lucy completes fly-by of main belt asteroid Dinkinesh

Lucy's route through the solar system
Lucy’s route through the solar system

The Lucy science team has confirmed that the spacecraft has successfully completed its fly-by of the asteroid Dinkinesh (the white dot in the lower left of the main asteroid belt in the graphic to the right) and is in good health.

Based on the information received, the team has determined that the spacecraft is in good health and the team has commanded the spacecraft to start downlinking the data collected during the encounter. It will take up to a week for all the data collected during the encounter to be downlinked to Earth.

Though the images and data of Dinkinesh obtained during this fly-by have science value, the real purpose of the fly-by was to test the operations of Lucy for when it reaches the Trojan asteroids in Jupiter’s orbit, as shown by the graphic. The spacecraft will now do a flyby of Earth in 2025 to slingshot it to the orbit of Jupiter, where it will do its main work exploring the Trojan asteroids there. On the way it will fly past a second main belt asteroid, dubbed Donaldjohanson.

A Martian splash crater in the northern lowland plains

A Martian splash crater
Click for original image.

Cool image time (necessary when there is no real space news to report)! The picture to the right, cropped, reduced, and sharpened to post here, was taken on June 29, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label as “steep crater walls.”

And the interior slopes of this 5-mile-wide unnamed crater are steep, about 600 feet high and descending at a grade of 10 to 13 degrees, getting steeper as you go down. In fact, the floor of the crater itself continues that slope downward to the west until it reaches the base of its western interior wall. For some reason the glacial material within it is piled up higher on its eastern end.

The dark streaks on the crater interior walls are either slope streaks or recurring slope lineae, with the former appearing somewhat randomly and the latter seasonal in nature. Both remain unexplained unique phenomenons of Mars. This new picture was likely a follow-up of a January 2014 MRO picture to see if anything had changed in the past decade.

To my eye it is difficult to detect any changes, but I am not looking at the highest resolution version of the picture. The lack of changes suggests the streaks are seasonal lineae, as both images were taken in the northern spring and the streaks in both appear much the same.
» Read more

Scour pits of volcanic Martian ash

Scour pits in volcanic ash
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on June 16, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The science team describes this as “clusters of scour pits,” which means the pits here were formed by the prevailing winds, which according to a global analysis of dunes on Mars, is probably blowing from the west to the east at this location.

This image only covers a small section of these scour pits. The full field extends about 20 by 18 miles across, and appears to be the southeastern flank of a mile-high dome. The scour marks could therefore also be evidence of some sagging of this material downhill along that flank.

It is also possible that the flow of the prevailing winds across this southeastern downhill slope is causing the pit formation. Unlike this flank, the rest of this dome is relatively smooth.
» Read more

Ingenuity completes 64th flight on Mars

Overview map
Click for interactive map.

Ingenuity's view just before landing
Click for original image.

In a pattern that is beginning to be almost routine, on October 27, 2023 the Mars helicopter Ingenuity completed its 64th flight on Mars, flying 1,348 feet at a speed of 13 mph for 139 seconds at an altitude of 39 feet.

As with most of its recent flights, the distance and time was slightly longer than the flight plan, likely because the helicopter took extra time finding a good landing spot.

On the overview map above, the green line marks the flight path, and the green dot the helicopter’s present position. The blue dot marks Perseverance’s present position. The yellow lines indicate the area covered by the color image to the right, cropped, reduced, and enhanced to post here. This image was taken by Ingenuity just a few seconds before landing, and looks across the floor of Neretva Vallis, where Perseverance will soon be traveling.

Scientists detect salts and carbon-based molecules on Ganymede

Ganymede as seen by Juno
A close-up image taken during the June 7, 2021
Juno fly-by of Ganymede Click for original image.

Using data obtained during a close fly-by of Ganymede by Juno in June 2021, scientists have detected evidence of salts and organic carbon-based molecules.

On June 7, 2021, Juno flew over Ganymede at a minimum altitude of 650 miles (1,046 kilometers). Shortly after the time of closest approach, the JIRAM instrument acquired infrared images and infrared spectra (essentially the chemical fingerprints of materials, based on how they reflect light) of the moon’s surface. Built by the Italian Space Agency, Agenzia Spaziale Italiana, JIRAM was designed to capture the infrared light (invisible to the naked eye) that emerges from deep inside Jupiter, probing the weather layer down to 30 to 45 miles (50 to 70 kilometers) below the gas giant’s cloud tops. But the instrument has also been used to offer insights into the terrain of moons Io, Europa, Ganymede, and Callisto (known collectively as the Galilean moons for their discoverer, Galileo).

The JIRAM data of Ganymede obtained during the flyby achieved an unprecedented spatial resolution for infrared spectroscopy – better than 0.62 miles (1 kilometer) per pixel. With it, Juno scientists were able to detect and analyze the unique spectral features of non-water-ice materials, including hydrated sodium chloride, ammonium chloride, sodium bicarbonate, and possibly aliphatic aldehydes.

The data indicated that the salts and organics were most concentrated in Ganymede’s equatorial regions, which are less impacted by Jupiter’s strong magnetic field. The scientists think these materials originally came from the brine of an underground ocean that somehow reached the surface, though this hypothesis remains unconfirmed.

Chinese crew completes five-month mission on Tiangong-3 after return to Earth

The new colonial movement: A three-man Chinese crew successfully landed today in north China in their Shenzhou capsule, completing a five-month mission on the Tiangong-3 space station.

The full mission length was 154 days. China claims that one of the astronauts was a civilian, but that really means nothing considering the security required to participate in these missions.

The crew that has taken over on Tiangong-3 are expected to do a mission of comparable length, probably pushing the length to six-months.

1 24 25 26 27 28 276