Image released of permanently shadowed floor of Shackleton Crater
NASA today released a mosaic combining images from Lunar Reconnaissance Orbiter’s high resolution camera LROC and the Shadowcam camera on South Korea’s Danuri lunar orbiter that shows for the first time the entire permanently shadowed floor of Shackleton Crater at the Moon’s south pole.
That mosaic, cropped, reduced, and sharpened to post here, is to the right. I have added the black cross to mark the location of the south pole, just inside Shackleton, the large crater on the right. The inset shows the floor of the crater at higher resolution.
LROC can capture detailed images of the lunar surface but has limited ability to photograph shadowed parts of the Moon that never receive direct sunlight, known as permanently shadowed regions. ShadowCam is 200-times more light-sensitive than LROC and can operate successfully in these extremely low-light conditions, revealing features and terrain details that are not visible to LROC. ShadowCam relies on sunlight reflected off lunar geologic features or the Earth to capture images in the shadows.
Thus, in the mosaic to the right the interior of Shackleton was imaged by Shadowcam, and then placed on a mosaic of LROC pictures.
If you click on the full image at high resolution and look closely at the crater floor, it is difficult to determine if there is any ice there. There are several mounds that could be ice, but could also be accumulated dirt and debris. What is most significant however is the smooth interior walls of the crater. It appears it will very possible for a rover to drive down those walls and into Shackleton.
NASA today released a mosaic combining images from Lunar Reconnaissance Orbiter’s high resolution camera LROC and the Shadowcam camera on South Korea’s Danuri lunar orbiter that shows for the first time the entire permanently shadowed floor of Shackleton Crater at the Moon’s south pole.
That mosaic, cropped, reduced, and sharpened to post here, is to the right. I have added the black cross to mark the location of the south pole, just inside Shackleton, the large crater on the right. The inset shows the floor of the crater at higher resolution.
LROC can capture detailed images of the lunar surface but has limited ability to photograph shadowed parts of the Moon that never receive direct sunlight, known as permanently shadowed regions. ShadowCam is 200-times more light-sensitive than LROC and can operate successfully in these extremely low-light conditions, revealing features and terrain details that are not visible to LROC. ShadowCam relies on sunlight reflected off lunar geologic features or the Earth to capture images in the shadows.
Thus, in the mosaic to the right the interior of Shackleton was imaged by Shadowcam, and then placed on a mosaic of LROC pictures.
If you click on the full image at high resolution and look closely at the crater floor, it is difficult to determine if there is any ice there. There are several mounds that could be ice, but could also be accumulated dirt and debris. What is most significant however is the smooth interior walls of the crater. It appears it will very possible for a rover to drive down those walls and into Shackleton.