Russia launches Luna-25 to the Moon


Click for interactive map.

After almost two decades of development, Russia today used its Soyuz-2 rocket to launch Luna-25, its first lander to the Moon since the 1970s.

The link is cued to the live stream, just prior to launch. It will take several days to get to the Moon and enter orbit, make some orbital adjustments, then land in Boguslawsky crater, as shown on the map to the right. It is likely its landing will occur before India’s Chandrayaan-3 lands on August 23rd but not certain, depending on the adjustments needed in lunar orbit. Both could even land on the same day.

The leaders in the 2023 launch race:

54 SpaceX
33 China
11 Russia
6 Rocket Lab
6 India

American private enterprise still leads China in successful launches 62 to 33, and the entire world combined 62 to 55, while SpaceX by itself now trails the entire world (excluding American companies) 54 to 55.

The icy mountains close to where SpaceX hopes to land Starship on Mars

The icy mountains near Starship's landing site on Mars
Click for original image.

Cool image time! The photo to the right, rotated, cropped, reduced, and sharpened to post here, was taken on June 25, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Labeled as showing “flow features” by the scientists, it gives us a nice example of many of the different types of glacial and near-surface ice features seen routinely in the Martian latitudes above 30 degrees, especially in the northern hemisphere.

First there is the apron around the mound. Its layering suggests the many cycles that Mars’ climate has undergone as its rotational tilt swung back and forth from as low as 11 to as much as 60 degrees (it is presently at 25 degrees).

The mound, with those two depressions at its peak, suggests the possibility that it is some form of ice/mud volcano, similar to the suspected ice/mud volcanoes routinely seen in the northern lowland plains of Utopia Basin.
» Read more

Astronomers: Binary system creates tidal waves on star’s surface 3x larger than our own Sun

Tidal waves on star's surface

Based on computer simulations, astronomers believe that the monthly light changes in a binary star system are partly caused by gigantic tidal waves on the surface of the system’s larger star, waves that are three times higher than the diameter of our own Sun.

The larger star in the system is nearly 35 times the mass of the Sun and, together with its smaller companion star, is officially designated MACHO 80.7443.1718 — not because of any stellar brawn, but because the system’s brightness changes were first recorded by the MACHO Project in the 1990s, which sought signs of dark matter in our galaxy.

Most heartbeat stars vary in brightness only by about 0.1%, but MACHO 80.7443.1718 jumped out to astronomers because of its unprecedentedly dramatic brightness swings, up and down by 20%. “We don’t know of any other heartbeat star that varies this wildly,” says MacLeod.

To unravel the mystery, MacLeod created a computer model of MACHO 80.7443.1718. His model captured how the interacting gravity of the two stars generates massive tides in the bigger star. The resulting tidal waves rise to about a fifth of the behemoth star’s radius, which equates to waves about as tall as three Suns stacked on top of each other, or roughly 2.7 million miles high.

The image on the right is a screen capture from the computer simulation. The bulges on the right side of the larger star are the hypothesized tidal waves.

Martian craters or volcanoes?

Martian craters or volcanoes?
Click for original image.

Cool image time! The picture to the right, cropped and reduced to post here, was taken on June 30, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The scientists label these features “cones” because many of the depressions sit on top of a mound or hill, suggesting some form of volcanic feature, either from erupting lava, ice, or mud.

Yet, are they volcanoes? Some or even many could instead be impact craters, created when a asteroid broke up during infall, creating a spray of bolides. Erosion of surrounding terrain can create what scientists call pedestal craters, but if all these craters were from an impact than all would either be pedestal craters, or not. Instead, we have a mix of some craters above and others level with the terrain.
» Read more

South Korea’s KARI space agency releases new images taken by its Danuri lunar orbiter

To celebrate the anniversary of its launch, South Korea’s KARI space agency today released new images taken by its Danuri lunar orbiter.

Images include views of Reiner Gamma, a so-called swirl, which features a localized magnetic field and marks a bright spot within the Oceanus Procellarum region. Another shows shadows inside Amundsen Crater, close to the lunar south pole and a potential landing site for NASA’s Artemis 3 mission, which is slated to put astronauts on the moon in late 2025.

Another southern feature captured by Danuri is Drygalski Crater, showing the central peak inside the impact crater.

Scientists repeat fusion power experiment that produced more energy than spent

For the second time ever, scientists have successfully produced more energy from a fusion power experiment than they spent running the experiment.

Physicists have since the 1950s sought to harness the fusion reaction that powers the sun, but until December no group had been able to produce more energy from the reaction than it consumes — a condition also known as ignition.

Researchers at the federal Lawrence Livermore National Laboratory in California, who achieved ignition for the first time last year, repeated the breakthrough in an experiment on July 30 that produced a higher energy output than in December, according to three people with knowledge of the preliminary results.

Before you start buying stock in fusion power or believe the glowing praises coming from politicians and government bureaucrats, be warned: This experiment, which cost billions, was only able to produce enough power to run a household iron for about an hour. It will likely take many more billions and decades more of research to scale it up to a viable power system that has any hope of being practical.

Ingenuity completes 54th flight, a short hop after previous flight ended prematurely

Overview map
Click for interactive map.

According to the Ingenuity engineering team, Ingenuity has successfully completed its 54th flight on Mars, a short 25 second hop up and down that was done to try to figure out why the previous flight previous flight, #53, had ended prematurely.

Flight 53 was planned as a 136-second scouting flight dedicated to collecting imagery of the planet’s surface for the Perseverance Mars rover science team. The complicated flight profile included flying north 666 feet (203 meters) at an altitude of 16 feet (5 meters) and a speed of 5.6 mph (2.5 meters per second), then descending vertically to 8 feet (2.5 meters), where it would hover and obtain imagery of a rocky outcrop. Ingenuity would then climb straight up to 33 feet (10 meters) to allow its hazard divert system to initiate before descending vertically to touch down.

Instead, the helicopter executed the first half of its autonomous journey, flying north at an altitude of 16 feet (5 meters) for 466 feet (142 meters). Then a flight-contingency program was triggered, and Ingenuity automatically landed. The total flight time was 74 seconds.

This explains why, after the 53rd flight, the engineering team had not immediately added that flight to the helicopter’s flight log. That log is now updated to include both the 53rd and 54th flights, but the data from the 53rd flight was held back until after the 54th flight was completed.

The green dot in the overview map above shows Ingenuity’s present position, only a few feet to the west from its previous position shown here. The blue dot indicates Perseverance’s present position. The red dotted line indicates the planned route of the rover.

Curiosity under the shadow of a Martian mountain

Panorama showing Kukenan on August 8, 2023
Click for full resolution. For original images, go here and here.

Overview map
Click for interactive map

Another cool image to start the week! The panorama above was created using two navigation images taken by Curiosity on August 8, 2023. It looks almost due west at the dramatic western wall of 400-foot-high Kukenan butte.

The blue dot on the overview map to the right marks Curiosity’s present location. The yellow lines indicate approximately the area covered by the panorama above. The red dotted line indicates the rover’s planned route.

Recently JPL issued a press release touting the efforts of its engineers to overcome the very steep and rocky terrain that Curiosity is presently traversing, an effort that I have documented repeated in the past few months (see posts here and here). They had been trying to send Curiosity straight up the mountain, to no success, and finally decided to do what every hiker and trail-maker does routinely, do back and forth switchbacks to reduce the grade per step.

In June they headed slowly uphill going east. In July they turned back and worked their way uphill going west, heading back to the Jau crater complex to get a quick look at these craters, then turned again in August to head back east, slowly working uphill along the contour lines. As they do this the rover is moving closer and closer to Kukenan, the largest butte so far studied in the foothills of Mount Sharp.

This panorama is one of the best illustrations of the very complex geological history of Mars. Each layer signals a past cycle in Mars’ very cyclic history, created because of the red planet’s wide swings of rotational tilt over time. Once underground, these layers have become exposed because erosion over the eons has slowly removed the material that once buried it, leaving the butte behind.

A ghostly bullseye galaxy

A ghostly bullseye
Click for original image.

A cool image to start the week! The picture to the right, cropped and reduced to post here, was taken by the Hubble Space Telescope as part of a survey scientists are doing using Hubble, attempting to get high resolution images of every galaxy within about 30 million light years of the Milky Way. Prior to this census Hubble had covered about 75% of these galaxies. This particular galaxy is called a lenticular galaxy.

Lenticular galaxies like NGC 6684 (lenticular means lens-shaped) possess a large disc but lack the prominent spiral arms of galaxies like the Andromeda Galaxy. This leaves them somewhere between elliptical galaxies and spiral galaxies, and lends these galaxies a diffuse, ghostly experience. NGC 6684 also lacks the dark dust lanes that thread through other galaxies, adding to its spectral, insubstantial appearance.

The unknown is whether this is the state of a galaxy prior to becoming a spiral, or it is what it looks like as it transitions from a spiral to an elliptical. This particular galaxy is likely the latter, as it lacks the dust, but this does not have to be the rule.

ISRO releases first images of the Moon from Chandrayaan-3

The Moon as seen by Chandrayaan-3

India’s space agency ISRO yesterday released the first images taken of the Moon by Chandrayaan-3, soon after entering lunar orbit.

The picture to the right is a screen capture from the short movie the agency compiled from those images, available at the link. The pictures were taken on August 5th, during the engine burn that put the spacecraft into lunar orbit. A solar panel can be seen on the left, with the cratered lunar surface to the right.

Chandrayaan-3 is presently undergoing a series of engine burns to lower its orbit in preparation for a planned August 23rd lunar landing in the high southern latitudes of the Moon.

Chandrayaan-3 enters lunar orbit


Click for interactive map.

India’s Chandrayaan-3 spacecraft today successfully entered lunar orbit, where it will spend the next week or so slowly lowering its orbit in preparation for a landing attempt by its Vikram lander on August 23rd.

Chandrayaan-3 began a roughly 30-minute burn around 9:30 a.m. Eastern, seeing the spacecraft enter an elliptical lunar orbit, the Indian Space Research Organization (ISRO) stated via social media. “MOX, ISTRAC, this is Chandrayaan-3. I am feeling lunar gravity,” ISRO Tweeted. “A retro-burning at the Perilune was commanded from the Mission Operations Complex (MOX), ISTRAC, Bengaluru.”

The spacecraft will gradually alter its orbit with a burn to reduce apolune Sunday, Aug. 6. It will settle into a 100-kilometer-altitude, circular polar orbit on Aug. 17. From here, the Vikram lander will separate from the mission’s propulsion module and enter a 35 x 100-km orbit in preparation for landing.

If the landing attempt is successful, the Pragyam rover will roll off Vikram to operate for about two weeks on the lunar surface in the high southern latitudes of the Moon.

Meanwhile, the Russian lander Luna-25 will launch on August 10th. Since the rocket that launches it and engines it carries are larger than that used by Chandrayaan-3, it will likely land in Boguslawsky crater, before Vikram touches down nearby.

Engineers regain full control over Voyager 2

A longshot effort by engineers has succeeded in re-establishing full communications with Voyager 2, launched in 1977 and flying outward at the edge of the solar system.

“The Deep Space Network used the highest-power transmitter to send the command (the 100-kw S-band uplink from the Canberra site) and timed it to be sent during the best conditions during the antenna tracking pass in order to maximize possible receipt of the command by the spacecraft,” Voyager project manager Suzanne Dodd told AFP. This so-called “interstellar shout” required 18.5 hours traveling at light speed to reach Voyager, and it took 37 hours for mission controllers to learn whether the command worked, JPL said in a statement.

The probe began returning science and telemetry data at 12:29 am Eastern Time on August 4, “indicating it is operating normally and that it remains on its expected trajectory,” added JPL.

Based on a weak signal received earlier, engineers were confident that the spacecraft was functioning in good order despite the loss in communications, and would automatically re-orient itself properly when it did an automatic reset in October. This attempt however fixed things now.

Regardless, the spacecraft probably only has a few more more years of operations before its nuclear powered source finally runs out sometime after 2025.

A hiking paradise on Mars!

A hiking paradise on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, sharpened, and annotated to post here, was taken on May 21, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows one of Mars’ more impressive mountains with the Sun somewhat low in the western sky, resulting in the long dark shadows on the eastern slopes.

The line is my quick attempt to mark the obvious route that would be taken along that ridge line to get from the bottom to the top. This could be a hiking trail, or a road. In either case, the elevation gain from the bottom of the ridge to the plateau on top would be about 3,900 feet in about a mile and a half, very steep for Earth — at approximately a 26 degree grade — but probably quite doable in the one-third Martian gravity.

The lower end of my proposed route however is hardly the bottom of the mountain. The slope, now alluvial fill made up of dust and debris from above, continues downhill for another 5,400 feet. All told, from top to bottom the elevation gain is about 9,300 feet over 8.5 miles.
» Read more

Scientists release infrared image of the Ring nebula, taken by Webb

The Ring Nebula, in false color by Webb
Click for original image.

Scientists yesterday released the first false-color infrared image of the Ring nebula taken by the Webb Telescope. That image, cropped to post here, is to the right. From the press release, which is heavy with platitudes but little information:

Approximately 2,600 lightyears away from Earth, the nebula was born from a dying star that expelled its outer layers into space. What makes these nebulae truly breath-taking is their variety of shapes and patterns, that often include delicate, glowing rings, expanding bubbles or intricate, wispy clouds. These patterns are the consequence of the complex interplay of different physical processes that are not well understood yet. Light from the hot central star now illuminates these layers.

Just like fireworks, different chemical elements in the nebula emit light of specific colours. This then results in exquisite and colourful objects, and furthermore allows astronomers to study the chemical evolution of these objects in detail.

It appears this image was produced using Webb’s near infrared instrument. Further data from its mid-infrared instrument has not yet been released. For a Hubble image of the Ring Nebula, in optical light that the human eye sees, go here.

NASA agrees to let Axiom fly a fourth private manned mission to ISS

NASA and Axiom have now signed a new agreement allowing Axiom to fly a fourth private manned mission to ISS, tentatively scheduled for no earlier than August 2024.

Through the mission-specific order, Axiom Space is obtaining from NASA crew supplies, cargo delivery to space, storage, and in-orbit resources for daily use. The order also accommodates up to seven contingency days aboard the space station. This mission is subject to NASA’s pricing policy for the services that are above space station baseline capabilities.

The order also identifies capabilities NASA may obtain from Axiom Space, including the return of scientific samples that must be kept cold and other cargo, and the capability to use the private astronaut mission commander’s time to complete NASA science or perform tasks for the agency.

The company has already hired SpaceX to provide the transportation to and from ISS, using its Falcon 9 rocket and one of its fleet of four manned Dragon capsules.

Despite good first images from Euclid, the orbiting telescope has a problem

Even though the first light images from Euclid have been sharp and exactly what astronomers want, the orbiting telescope designed to make a 3D map of billions of galaxies has an issue that will likely put some limits to that map.

When the telescope started booting up, ESA observers were concerned by the appearance of light markings on the first images relayed to Earth. This, it confirmed, was due to sunlight filtering into the telescope, “probably through a tiny gap”.

A correction to Euclid’s position was able to offset this issue. It means that while the ESA is confident Euclid will be fine to proceed with its mapping mission, particular orientations for the telescope may not be possible.

A limitation like this means that the telescope will not being able to look in some directions and get mapping images. Thus, the overall map will have gaps, though it appears at this moment that the scientists think those gaps will not seriously impact the telescope’s overall work. We shall see.

The dry and mountainous terrain west of Jezero Crater

The dry and mountainous terrain west of Jezero Crater
Click for original image.

Since my earlier update today about Perseverance and Ingenuity mentioned the very diverse and strange geology known to exist west of Jezero Crater and where the rover is eventually headed, I thought it worthwhile to post another cool image of that terrain.

The picture to the right, rotated, cropped, reduced and sharpened to post here, was taken on May 22, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Labeled a “terrain sample” image, the location was likely chosen by the camera team in order to fill a gap in the camera’s schedule so that they can maintain its proper temperature. Having a gap that put the spacecraft over this region to the west of Jezero was however a great opportunity to get another look at this rocky, mountainous, and very parched terrain, located in Mars’ very dry equatorial regions.
» Read more

Perseverance snaps new close-up of Ingenuity

Overview map
Click for interactive map.

Ingenuity as seen by Perseverance on August 2, 2023
Ingenuity as seen by Perseverance on August 2, 2023.
Click for original image.

Cool image time! With Perseverance and Ingenuity in the past week getting close together for the first time in months, the Perseverance team naturally turned its high resolution mast cameras at the helicopter. The picture to the right, cropped, reduced, and sharpened to post here, was taken on August 2, 2023 by the rover’s left mast camera, showing Ingenuity only about two hundred feet away.

The blue dot on the overview map above shows Perseverance’s present location, with the green dot marking Ingenuity’s. The picture to the right is therefore looking almost due south. The red dotted line indicates the rover’s planned route, moving towards Neretva Vallis, the gap in the rim of Jezero Crater from which the delta had flowed, eons ago. The rover’s goal is to eventually enter that gap and explore the very diverse and strange geology known to exist outside the crater to the west.

We should also expect even better images of Ingenuity in the next week. Its 54th flight is scheduled for today, in which the engineering team wants to send the helicopter on a simple straight up and down hop of sixteen feet in order to better “localize” the helicopter. With Perseverance less than two hundred feet away, its cameras should be able to assemble a great movie of that flight.

New software detects its first potentially dangerous asteroid

New software designed to detect asteroids, developed for use with the Rubin Observatory presently being built in Chile, has successfully discovered its first potentially hazardous asteroid (PHA) using data from another smaller operational ground-based telescope.

The discovered asteroid is 600 feet long, large enough to pose a real threat should it ever hit the Earth. Fortunately, the data says that though its orbit can take it as close as 140,000 miles there is no impact likely in the foreseeable future.

When the Rubin telescope begins its planned ten year survey of the entire night sky in 2025, this software is expected to almost triple the number of known potentially-hazardous-asteroids, from 2,350 to almost 6,000.

Funded primarily by the U.S. National Science Foundation and the U.S. Department of Energy, Rubin’s observations will dramatically increase the discovery rate of PHAs. Rubin will scan the sky unprecedentedly quickly with its 8.4-meter mirror and massive 3,200-megapixel camera, visiting spots on the sky twice per night rather than the four times needed by present telescopes. But with this novel observing “cadence,” researchers need a new type of discovery algorithm to reliably spot space rocks.

Thus, the development of this new software.

The first glacial evidence found on Mars back in 2007

Glaciers on Mars?
Click for original image.

Cool image time! The picture to the right, cropped, reduced, sharpened, and annotated to post here, was taken on January 3, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the eastern wall of what the scientists call a graben, a large depression caused when the ground inside the depression suddenly shifted downward.

The elevation difference between the high and low points is about 3,500 feet. The streaks on the lower half of the cliff wall are slope streaks, a phenomenon unique to Mars that remains at this moment unexplained. Though the streaks resemble avalanches, they do not change the topography in any way, have no debris pile at their base, and appear instead to be a stain that appears at random times of the year that fades with time.

What is intriguing about this picture however is the wavelike floor on its western half. At first glance these waves suggest some form of dust dunes or lava flows, but neither conclusion appears correct. Instead, we are looking at what was one of the first discoveries on Mars of what scientists have determined to be glacial features.
» Read more

Bones of the biggest ever whale species possibly found?

A big whale?

The uncertainty of science: Paleontologists have discovered a portion of the skeleton of what they claim might be the biggest and heaviest animal ever found, a whale that potentially grew to be as much as twice as big as a blue whale, the largest living species previously known.

A newly described fossilized whale named Perucetus colossus, dating to roughly 38 million years ago, might have been heavier than a blue whale, even if it was not as long. Blue whales, which are endangered, weigh about 100 to 150 tonnes, although some might be as heavy as 200 tonnes. Perucetus colossus was between 85 and 340 tonnes, according to the scientists who found and described the remains: 13 vertebrae, 4 ribs and a bit of pelvis. Their best-guess estimate is that the whale was around 180 tonnes. This mind-boggling mass is the result of its bones, which were big and dense — an evolutionary adaptation that helped it to dive.

The graphic to the right shows the discovered bones in red, with the rest of the theorized skeleton indicated in grey. Only in the article’s next-to-last paragraph does Nature recognize this very very very large uncertainty:

The team chose to create a visual reconstruction of what the whale might have looked like, basing the head on skulls of related basilosaurid species, but they caution that some of the details are speculative. It could have been skinnier. But it also could have been quite a bit longer or fatter, [co-author Eli] Amson says.

In other words, they presently have no idea what the species actually looked like, or how big it actually was. It very well could have been much shorter and thinner than proposed. It appears therefore they chose to highlight the largest possible size to garner the biggest press coverage — which of course they are getting.

NASA detects weak signal from Voyager 2

Though communications with Voyager 2 have not been re-established, JPL engineers using NASA’s Deep Space Network of antennas have detected a weak signal from Voyager 2 that indicates the spacecraft is still functioning.

Using multiple antennas, NASA’s Deep Space Network (DSN) was able to detect a carrier signal from Voyager 2. A carrier signal is what the spacecraft uses to send data back to Earth. The signal is too faint for data to be extracted, but the detection confirms that the spacecraft is still operating. The spacecraft also continues on its expected trajectory. Although the mission expects the spacecraft to point its antenna at Earth in mid-October, the team will attempt to command Voyager sooner, while its antenna is still pointed away from Earth. To do this, a DSN antenna will be used to “shout” the command to Voyager to turn its antenna. This intermediary attempt may not work, in which case the team will wait for the spacecraft to automatically reset its orientation in October.

The hope is that new commands to re-orient, sent by the strongest signal possible, might be heard by the spacecraft, causing it to obey now. If not, this weak signal from Voyager 2 still suggests that the October reset will occur as normal and engineers will be able to recover communications then.

Sunspot update: In July the Sun continued its high sunspot activity

Today NOAA released its monthly update of its graph that tracks the number of sunspots on the Sun’s Earth-facing hemisphere. As I have done every month for the entire thirteen years I have been doing this website, I have posted that updated graph below, adding to it some extra details to provide some context.

Though the sunspot count in July was slightly less than the very high numbers in June (the highest seen in more than two decades), the decline was almost inconsequential. Except for June’s activity, the activity in July was still the highest sunspot count in a month since September 2002, when the Sun was just beginning its ramp down after its solar maximum that reached its peak in late 2001. From that time until the last two months, the Sun had been in a very prolonged quiet period, with two solar minimums that were overly long and a single solar maximum that was very weak with a extended double peak lasting almost four years.
» Read more

The wind-scoured dusty and cratered dry tropics of Mars

The wind-scoured dusty and cratered dry tropics of Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on June 2, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows one small area in Martian equatorial regions where the main features are a dusty plain interspersed with craters, not entirely dissimilar to the Moon .

In the picture the northwest-to-southeast orientation of ridge-lines, plus the position of divots with their steep and deep end all on the northwest side, all suggest the prevailing winds here blow in the same direction, from the northwest to the southeast.

We are looking at a very ancient terrain. Many of these craters likely date from the early bombardment period of the solar system, just after the planets had formed but there was still a lot of objects around crashing into them.
» Read more

Eruption on comet results in its tail splitting as it brightens by 100x

On July 20, 2023 the Comet 12P/Pons-Brooks suddenly erupted for the first time in almost seven decades, making it a hundred times brighter than normal while splitting its tail in two.

As of July 26, the comet’s coma had grown to around 143,000 miles (230,000 kilometers) across, or more than 7,000 times wider than its nucleus, which has an estimated diameter of around 18.6 miles (30 km), Richard Miles, an astronomer with the British Astronomical Association who studies cryovolcanic comets, told Live Science in an email.

But interestingly, an irregularity in the shape of the expanded coma makes the comet look as though it has sprouted horns. Other experts have also likened the deformed comet to the Millennium Falcon, one of the iconic spaceships from Star Wars, Spaceweather.com reported.

It is believed the tail’s shape is the result of the shape of the comet’s nucleus, which probably had a solid ridge acting as a barrier to material at that point.

The comet, which orbits the Sun every 71 years, will make its closest approach to Earth in the spring of 2024, when it will likely be visible to the naked eye.

Monitoring the gullies on Mars for changes

Monitoring the gullies on Mars
Click for original image.

Cool image time! The picture to the right, cropped and reduced to post here, was taken on March 24, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) as part of a long term monitoring program of the many Martian gullies scientists have found above 30 degrees north latitude on a variety of slopes.

Martian gullies are small, incised networks of narrow channels and their associated downslope sediment deposits, found on the planet of Mars. They are named for their resemblance to terrestrial gullies. First discovered on images from Mars Global Surveyor, they occur on steep slopes, especially on the walls of craters. Usually, each gully has a dendritic alcove at its head, a fan-shaped apron at its base, and a single thread of incised channel linking the two, giving the whole gully an hourglass shape. They are estimated to be relatively young because they have few, if any craters.

…Most gullies occur 30 degrees poleward in each hemisphere, with greater numbers in the southern hemisphere. Some studies have found that gullies occur on slopes that face all directions; others have found that the greater number of gullies are found on poleward facing slopes, especially from 30° to 44° S. Although thousands have been found, they appear to be restricted to only certain areas of the planet. In the northern hemisphere, they have been found in Arcadia Planitia, Tempe Terra, Acidalia Planitia, and Utopia Planitia. In the south, high concentrations are found on the northern edge of Argyre basin, in northern Noachis Terra, and along the walls of the Hellas outflow channels.

Orbital data has identified almost 5,000 gullies on Mars. Based on their shape and the Martian climate, scientists generally think these gullies were formed by some form of water flow, possibly coming from an underground aquifer at their top.
» Read more

Scientists increasingly put politics over uncertainty in their research papers

The modern scientific method
The modern scientific method

The death of uncertainty in science: According to a paper published this week in the peer-review journal Science, scientists in recent years are increasingly abandoning uncertainty in their research papers and are instead more willing to make claims of absolute certainty without hesitation or even proof.

If this trend holds across the scientific literature, it suggests a worrisome rise of unreliable, exaggerated claims, some observers say. Hedging and avoiding overconfidence “are vital to communicating what one’s data can actually say and what it merely implies,” says Melissa Wheeler, a social psychologist at the Swinburne University of Technology who was not involved in the study. “If academic writing becomes more about the rhetoric … it will become more difficult for readers to decipher what is groundbreaking and truly novel.”

The new analysis, one of the largest of its kind, examined more than 2600 research articles published from 1997 to 2021 in Science, which the team chose because it publishes articles from multiple disciplines. (Science’s news team is independent from the editorial side.) The team searched the papers for about 50 terms such as “could,” “appear to,” “approximately,” and “seem.” The frequency of these hedging words dropped from 115.8 instances per 10,000 words in 1997 to 67.42 per 10,000 words in 2021.

Those numbers represent a 40% decline, a trend that has been clear for decades, first becoming obvious in the climate field. » Read more

Euclid’s first images look good

Scientists have determined that the first test images from the two cameras on the recently launched orbiting Euclid space telescope are sharp and as expected.

Both VIS and NISP provided these unprocessed raw images. Compared to commercial products, the cameras are immensely more complex. VIS comprises 36 individual CCDs with a total of 609 megapixels and produces high-resolution images of billions of galaxies in visible light. This is how astronomers determine their shape. The first images already give an impression of the abundance that the data will provide.

NISP’s detector consists of 16 chips with a total of 64 megapixels. It operates in the near-infrared at wavelengths between 1 and 2 microns. In addition, NISP serves as a spectrograph, which splits the light of the captured objects similar to a rainbow and allows for a finer analysis. These data will allow the mapping of the three-dimensional distribution of galaxies.

Knowing that 3D distribution will allow scientists to better determine the nature of both dark energy (related to the acceleration of the universe’s expansion) and dark matter (related to an undiscovered mass that affects the formation and shape of galaxies).

Meandering ridge exiting glacier on Mars

Overview map

Meandering ridge exiting glacier on Mars
Click for original image.

Today’s cool image illustrates the complex explanations scientists sometimes have to come up with explain the strange geology seen on Mars. The picture to the right, cropped, reduced, and sharpened to post here, was taken on May 30, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label as a whitish “ridged flow-like feature” that appears to exit out of the massive hill to the west.

The white dot on the overview map above as well as in the inset marks this location, smack dab inside the 2,000-mile-long strip of glacier country in the Martian northern mid-latitudes. As you can see from the inset, that massive hill is actual the foot of a large apron of material, likely ice-infused, that has sagged down from the large 5,400-foot high mesa to the west.

The white material is likely what the scientists call an inverted river. Once it was a channel in which either water or ice flowed. With time the weight of that material compacted the riverbed so that it was denser than the surrounding terrain, much of which was likely soft anyway because of a high ice content. When that surrounding terrain eroded away, the riverbed resisted that erosion, and instead became the raised ridge we now see.

Trial operations begin for China’s new radio array for observing the Sun

Engineers have begun trial operations for a almost two-mile diameter antenna array in China designed to observe the Sun.

The Daocheng Solar Radio Telescope (DSRT) consists of 313 dishes, each with a diameter of 19.7 feet (6 meters), forming a circle with a circumference of 1.95 miles (3.14 kilometers). A 328-feet-high (100 m) calibration tower stands in the center of the ring. The array has undergone half a year of debugging and testing, demonstrating the capability to consistently and reliably monitor solar activity with high precision. Trial operations officially started July 14, according to CCTV News.

This design is a variation of the VLA radio antenna in New Mexico, which has 28 antennas arranged not in a circle but in a Y-configuration that can be extended or shortened. That additional capability is probably why VLA is focused on astronomical observations, not just the Sun.

1 30 31 32 33 34 276