Many carbon-based molecules identified in Ryugu samples

Researchers in Japan, Europe, and the U.S. have now identified many carbon-based molecules in the Ryugu samples brought back to Earth by Japan’s Hayabusa-2 asteroid probe. From their paper, published in Science yesterday:

We identified numerous organic molecules in the Ryugu samples. Mass spectroscopy detected hundreds of thousands of ion signals, which we assigned to ~20,000 elementary compositions consisting of carbon, hydrogen, nitrogen, oxygen, and/or sulfur. Fifteen amino acids, including glycine, alanine, and α-aminobutyric acid, were identified. These were present as racemic mixtures (equal right- and left-handed abundances), consistent with an abiotic origin. Aliphatic amines (such as methylamine) and carboxylic acids (such as acetic acid) were also detected, likely retained on Ryugu as organic salts.

The presence of aromatic hydrocarbons, including alkylbenzenes, fluoranthene, and pyrene, implies hydrothermal processing on Ryugu’s parent body and/or presolar synthesis in the interstellar medium. Nitrogen-containing heterocyclic compounds were identified as their alkylated homologs, which could have been synthesized from simple aldehydes and ammonia. In situ analysis of a grain surface showed heterogeneous spatial distribution of alkylated homologs of nitrogen- and/or oxygen-containing compounds.

The large number of carbon-based molecules is not unlike data from similar carbonaceous chondrite meteorites, though the differences appear to suggest Ryugu experienced chemical processes in connection with water during its lifetime.

Note for clarity: Organic molecules are not life. This is a term scientists use for any carbon-based molecule.

Scientists pin down Venus’s most likely active volcanic regions

The Aine corona on Venus
The Aine corona on Venus, about 124 miles in diameter.
Click for original image.

Using archival data from the Magellan radar imaging Venus orbiter from the early 1990s, scientists think they have identified the regions Venus that are most likely to have active volcanoes, places that have a unique Venusian circular feature called coronae.

The researchers focused on 65 previously unstudied coronae that are up to a few hundred miles across. To calculate the thickness of the lithosphere surrounding them, they measured the depth of the trenches and ridges around each corona. What they found is that ridges are spaced more closely together in areas where the lithosphere is more flexible, or elastic. By applying a computer model of how an elastic lithosphere bends, they determined that, on average, the lithosphere around each corona is about 7 miles (11 kilometers) thick – much thinner than previous studies suggest. These regions have an estimated heat flow that is greater than Earth’s average, suggesting that coronae are geologically active.

Thus, more volcanic activity, releasing the planet’s interior heat outward.

This research confirms other work done looking at coronae back in 2020.

ULA now targets May 4th for first Vulcan launch

According to ULA’s CEO, the company has now scheduled the first launch of its Vulcan rocket for May 4, 2023, a delay of about a month from the previous schedule.

The delay to the new date was caused by a variety of factors. First, the launch window for the prime payload, Astrobotic’s Peregrine lunar lander, is only open certain days of the month. Second, that lander is just finishing final testing, and the extra time was needed to get it to Cape Canaveral and stacked on the rocket. Third, the extra time was needed to complete all the dress rehearsal countdown tests prior to launch. However, the biggest reason for the delay appears to have been one of Blue Origin’s BE-4 rocket engines.

ULA and Blue Origin are finishing the formal qualification of the BE-4 engine, which Bruno described as the “pacing item” for the launch. “It’s taking a little bit longer than anticipated.”

He revealed that, in a qualification test of one of two engines, the liquid oxygen pump had about 5% higher performance than expected or seen on other engines. “When the performance of your hardware has even a small shift that you didn’t expect, sometimes that is telling us that there could be something else going on in the system that is potentially of greater concern.”

ULA and Blue Origin decided to take the engine off the test stand and disassemble it. Engineers concluded that the higher performance was just “unit-to-unit variation” and not a problem with the engine itself, Bruno said.

If Blue Origin was manufacturing and testing these engines as it needs to do, in large numbers, it would have known a long time ago the range of “unit-to-unit variation” in performance. That this is not known at this late time once again tells us that the company is still struggling to build these engines routinely. Yet it will soon need to produce plenty in short order in order to sustain not only ULA’s Vulcan launch schedule but the launch schedule of its own New Glenn rocket.

Ingenuity completes 45th flight; Perservance races to keep up

Overview map
Click for interactive map.

On February 22, 2023, the Mars helicopter Ingenuity completed its 45th flight on Mars, flying 1,627 feet in 2 minutes and 24 seconds. This was 13 feet farther than planned, and 5 seconds longer, the extra distance likely because the helicopter needed to find a good landing spot.

The green dot on the map to the right indicates Ingenuity’s new position. The blue dot marks Perseverance’s position. The rover has been moving fast, quickly climbing up onto the delta behind Ingenuity only days after it has completed each recent flight. It appears the Perseverance science team wishes to reach the top of the delta as fast as possible, where it can then begin drilling for more core samples.

It is becoming increasing clear the limitations of Perseverance. It was designed to obtain these core samples for return to Earth, but in the process many of the geological tools and sensors that Curiosity carries were eliminated. The result is the Perseverance can’t actually find out as much about the geology in Jezero Crater as Curiosity can. This doesn’t mean it can’t do any geological work, because it certainly can, but all of the analysis of drill samples that Curiosity does is beyond Perservance’s capabilities. It basically can only do contact science and close inspection. The analysis of its drilled samples must wait until the samples are returned to Earth, about a decade from now.

February 23, 2023 Quick space links

Courtesy of BtB’s stringer Jay.

 

 

 

 

  • Russia now targets a July 13, 2023 launch date for its Luna-25 Moon lander
  • Though this mission has been delayed endlessly, and Russia has also been forced to delay its later planned unmanned lunar probes due to its lack of certain components formerly obtained from the west before its invasion of the Ukraine, I now expect this launch to happen on that date or reasonable close to it.

Soft Martian buttes

Soft Martian buttes
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on January 1, 2023 by the high resolution camera on Mars Reconnaissance Orbiter to fill a gap in its shooting schedule so that the scientists could maintain the camera at its proper temperature.

In other words, the picture was not taken as part of any particular research project. Its target was in a sense chosen almost at random, though the science team always tries to find something of interest in such situations. In this case I think they succeeded, as these soft terraced buttes illustrate well the alien nature of Mars. The ground is barren, with absolutely no evidence of any life, and it appears that the buttes have been softened and eroded by eons of wind action. You can see evidence of this by the handful of dust devil tracks that cross the buttes.

There is more.
» Read more

Astronomers discover dwarf binary star system invisible to the human eye

Using the infrared instrument on the Keck telescope in Hawaii, astronomers have discovered a dwarf binary star system invisible to the human eye, with the tightest orbit ever seen.

The two stars are so close that it takes them less than one Earth day to revolve around each other; each star’s “year” lasts just 17 hours.

The newly discovered system, named LP 413-53AB, is composed of a pair of ultracool dwarfs, a class of very low-mass stars that are so cool that they emit their light primarily in the infrared, making them completely invisible to the human eye. They are nonetheless one of the most common types of stars in the universe.

Previously, astronomers had only detected three short-period ultracool dwarf binary systems, all of which are relatively young — up to 40 million years old. LP 413-53AB is estimated to be billions of years old — similar in age to our Sun — but has an orbital period that is about four times shorter than all the ultracool dwarf binaries discovered so far.

The two stars’ mutual orbit generally places them only about 600,000 miles apart. For comparison, the Moon orbits the Earth at a distance of 240,000 miles.

Webb spots massive galaxies in the early universe that should not exist at that time

The uncertainty of science: Astronomers using the Webb Space Telescope have identified six galaxies that are far too massive and evolved to have formed so quickly after the Big Bang.

The research, published today in Nature, could upend our model of the Universe and force a drastic rethink of how the first galaxies formed after the Big Bang. “We’ve never observed galaxies of this colossal size, this early on after the Big Bang,” says lead researcher Associate Professor Ivo Labbé from Swinburne University of Technology.

“The six galaxies we found are more than 12 billion years old, only 500 to 700 million years after the Big Bang, reaching sizes up to 100 billion times the mass of our sun. This is too big to even exist within current models.

You can read the paper here [pdf]. The “current models” Labbé is referring to are all the present theories and data that say the Big Bang occurred 13.7 billion years ago. These galaxies, however, found less than a billion years after that event, would have needed 12 billion years to have accumulated their mass.

If confirmed, these galaxies essentially tell us that the Big Bang is wrong, or very very VERY incomplete, and that all the data found that dates its occurrence 13.7 billion years ago, based on the Hubble constant, must be reanalyzed.

It is also possible these galaxies are actually not galaxies, but a new kind of supermassive black hole able to form very quickly. Expect many scientists who are heavily invested in the Big Bang to push for this explanation. It might be true, but their biases are true also, which means that Webb is presenting us with new data that calls for strong skepticism of all conclusions, across the board.

Cliffs inside 285-mile-wide Schiaparelli Crater on Mars

Cliffs inside Schiaparelli Crater
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on December 2, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and was labeled by the science team as showing “dramatic cliffs and swirls in mound-skirting unit.”

I estimate the tallest point of this cliff butte to be somewhere between 500 and 800 feet high. And while the cliff is what first attracts the eye, one mustn’t ignore the vast amounts of dust and sand that cover everything here. The small teardrop-shaped buttes on the upper plateau suggest the prevailing wind direction there is from the north to the south. However, the north-south orientation of the ripple dunes on the floor below suggests that the prevailing wind direction below the cliff is east-west. Explaining how the topography could so quickly change the prevailing wind direction is beyond my skill.

The swirls mentioned by the scientists can be seen at the top of the cliff (on the left) and just below its base, in areas where there appears to be less dust. Those swirls reveal the many geological layers here.
» Read more

NASA signs deal to launch Israel’s first space telescope mission

NASA today announced that it has agreed to provide the launch opportunity for Israel’s first space telescope, dubbed the Ultraviolet Transient Astronomy Satellite (ULTRASAT), designed to make wide-field ultraviolet observations from geosynchronous orbit.

Led by the Israel Space Agency and Weizmann Institute of Science, ULTRASAT is planned for launch into geostationary orbit around Earth in early 2026. In addition to providing the launch service, NASA will also participate in the mission’s science program.

The press release, both from NASA and from Weizmann, was remarkably vague about how NASA will provide that launch capability. The only orbital rocket NASA has is SLS. Will ULTRASAT launch as a secondary payload on a future Artemis launch? Or will NASA buy launch services from another rocket company? The press releases did not say.

Regardless, this deal means that American taxpayers have agreed to foot the launch cost of this Israeli space telescope, in exchange for obtaining telescope time for American astronomers. Interestingly, the press releases also provided no information about how much that launch cost would be.

There has long been a need for a dedicated new ultraviolet space telescope, so this deal could be a good one for American astronomers and a worthwhile use of some of NASA’s budget. It just seems inappropriate for NASA to keep the details so secret.

A lunar lava avalanche three miles wide and one mile long

A lunar lava avalanche three miles wide and one mile long

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken October 16, 2016 and released today by the Lunar Reconnaissance Orbiter (LRO) science team. It shows a three-mile-wide unnamed crater that impacted on the rims of two other lunar impacts, one larger but the other monumental.

The trio of impact events that resulted in this spectacular corner of the Moon occurred over nearly four billion years of lunar history; first, the Orientale basin (>3.7 billion years), Lowell W (one to three billion years), and finally, this unnamed crater (likely <100 million years).

The Orientale Basin is about 500 miles wide, and is one of the most distinct large features on the lunar surface, a gigantic bowl with three concentric rings surrounding it. Because it is near the eastern limb of the near side, it wasn’t until the space age before a good overhead view of this major lunar geological impact basin was seen. Lowell W is about 11 miles wide.

The overview map below shows the context between Lowell W and this small crater, with the yellow lines indicating the area covered by the picture above.
» Read more

Solar Orbiter captures Mercury crossing in front of the Sun

Solar Orbiter spots Mercury in front of the Sun
Click for full movie.

The European probe Solar Orbiter successfully filmed Mercury as it crossed in front of the Sun — from the spacecraft’s perspective — on January 3, 2023.

The transit was captured by several different instruments on Solar Orbiter, as shown at the link. The picture above is a screen capture from the short movie made by its Extreme Ultraviolet Imager. The black disk is Mercury, moving from the left to the right. In the background the limb of the Sun can be seen, with a distinct feature flaring out from that limb.

For Solar Orbiter, this particular transit offered a valuable chance to calibrate the instruments. “It is a certified black object travelling through your field of view,” says Daniel Müller, Solar Orbiter Project Scientist at ESA. Thus, any brightness recorded by the instrument within Mercury’s disc must be caused by the way the instrument transmits its light, called the point spread function. The better this is known, the better it can be removed. So be studying this event, the quality of the Solar Orbiter data can be ever further improved.

If the transit also produced some spectacular images, so much the better.

VLT takes picture of exoplanet

VLT's picture of exoplanet
Click for original image.

The ground-based Very Large Telescope (VLT) in Chile has successfully taken a picture of an exoplanet four to six times larger than Jupiter that is circling its star at about the same distance as Saturn.

That picture, cropped to post here, is to the right. Other data from other observatories had suggested the star AF Leporis, 87.5 light years away, might have an exoplanet, so astronomers decided to focus VLT on it to see if it could spot it.

AF Leporis is about as massive and as hot as the sun, ESO wrote in the statement, and in addition to its one known planet the star also has a disk of debris similar to the solar system’s Kuiper Belt. AF Leporis is, however, much younger than the sun. At 24 million years old, it is about 200 times younger than our star. This young age makes AF Leporis and its planetary system especially intriguing for astronomers as it can provide important insights into the evolution of our own solar system.

To snap this picture, the VLT had to use adaptive optics to smooth out the fuzziness produced by the Earth’s atmosphere, while also blocking out the star’s own light (as shown by the black disk in the image).

China’s continued silence about Zhurong suggests Mars rover is dead

Zhurong's ground-penetrating radar data
The data from Zhurong’s ground-penetrating radar instrument.

Overview map
Zhurong’s final location is somewhere in the blue circle.

China’s continued silence about Zhurong — which should have come out of hibernation sometime in late December-early January — suggests the Mars rover did not survive the Martian winter, which this year was also lengthened near the end by some additional dust storms.

Zhurong went into hibernation in May 2022, at the start of winter, with plans to awaken in December. Like the helicopter Ingenuity and the lander InSight, it depends on solar power, and had to contend with a very relatively severe winter dust season this Martian year.

Even though the Chinese press has loudly touted Tianwen-1’s first two years in Mars orbit, it has made little or no mention of Zhurong, a silence that is deafening.

The silence is also foolish, because China has nothing to be ashamed of concerning Zhurong. The mission was only supposed to operate for 90 days. Instead it lasted more than a year, traveling much farther than planned. Most important, the data from its radar instrument (shown above) showed that, at this location at 25 degrees north latitude, there is no underground ice to a depth of 260 feet. That data confirmed that the Martian equatorial regions below 30 degrees latitude are very dry, with any underground ice existing rarely if at all. The icy regions above 30 degrees latitude do not appear to extend much farther south than that latitude.

Splashed lava from a Martian impact

Splashed lava from a Martian impact
Click for original image.

Almost always it is impossible to understand a high resolution image from Mars Reconnaissance Orbiter (MRO) unless you also take a wider view. Today’s cool image to the right, rotated, cropped, reduced, and sharpened to post here, is a perfect example.

Taken on January 6, 2023, it shows what the science team labeled as a “rocky deposit on crater floor.” To my eye however none of this appeared tremendously rocky. Instead, what I saw was a curved and layered flow feature whose ancient age was suggested by the many later craters scattered across its surface.

Still, its origin was unclear. It isn’t ice, not only because of its apparent resistance from disturbance from those later crater impacts but because it is located at about 20 degrees north latitude, in the dry equatorial regions of Mars. If lava, what is its source? As I noted, a wider look was necessary to answer that question.
» Read more

For the 4th time Curiosity’s drill fails to penetrate marker layer

Failed drillhole by Curiosity in marker layer
Click for original image.

For the fourth time this past weekend Curiosity’s drill was unable to penetrate the hard rock of what scientists have labeled “the marker layer”, a distinct feature seen at approximately the same elevation at many places on the flanks of Mount Sharp on Mars.

The image to the right, cropped and reduced to post here, shows that the drill was once again only able to drill a eighth to a quarter inch, not enough to gather samples for testing.

This was our fourth attempt to drill this marker band, and we gave it our best shot from both a geology and engineering perspective. Unfortunately these rocks do not want to cooperate – they’re hard and they weather into resistant and recessive beds which make them very challenging to drill. So the team made the difficult decision to get back on the road, without a drill sample from this location

» Read more

India’s Chandrayaan-3 lunar lander/rover passes radiation testing


Click for interactive map.

According to India’s space agency ISRO, its next lunar lander/rover, Chandrayaan-3, has successfully passed testing to make sure it can function without issues in the harsh electromagnetic environment of space.

Magnetic Interference/ Electro – Magnetic Compatibility) test is conducted for satellite missions to ensure the functionality of the satellite subsystems in the space environment and their compatibility with the expected electromagnetic levels.

The spacecraft, which will carry a rover to the Moon’s south pole regions (the red dot on the map to the right), is tentatively scheduled for launch anywhere from June to the end of ’23, depending on the news story you read.

A galaxy’s structure of gas and dust, as seen in the infrared by Webb

NGC 1433 as seen in the infrared
NGC 1433 as seen in the infrared. Click for original image.

Scientists have now released 21 papers on the gas and dust structures in nearby galaxies, based on infrared images from the Webb Space Telescope, used in collaboration with other telescopes looking in other wavelengths.

The largest survey of nearby galaxies in Webb’s first year of science operations is being carried out by the Physics at High Angular resolution in Nearby Galaxies (PHANGS) collaboration, involving more than 100 researchers from around the globe. The Webb observations are led by Janice Lee, Gemini Observatory chief scientist at the National Science Foundation’s NOIRLab and affiliate astronomer at the University of Arizona in Tucson.

The team is studying a diverse sample of 19 spiral galaxies, and in Webb’s first few months of science operations, observations of five of those targets – M74, NGC 7496, IC 5332, NGC 1365, and NGC 1433 – have taken place.

The image to the right is Webb’s infrared image of NGC 1433, estimated to be 46 million light years away. The bright areas extending outward in the spiral arms are believed to be star-forming regions. From the caption:

At the center of the galaxy, a tight, bright core featuring a unique double ring structure shines in exquisite detail with Webb’s extreme resolution. In this case, that ‘double ring’ is actually tightly wrapped spiral arms that wind into an oval shape along the galaxy’s bar.

NGC 1433 is a Seyfert galaxy, which are typically relatively close to Earth and has a supermassive black hole at the center eating material at a high rate. The brightness and lack of dust in the MIRI image of NGC 1433 could hint at a recent collision with another galaxy.

When comparing Webb’s infrared view with Hubble’s optical view, taken in 2014 and found here, the differences are definitely striking. Webb sees the gas and dust that is dark in Hubble’s images, while Hubble sees things at much higher resolution and thus sees more fine detail.

China releases data sets from Chang’e-4 lander

China today released another set of data from the instruments on the Chang’e-4 lander, which landed on the far side of the Moon on January 3, 2019, bringing with it China’s Yutu-2 rover.

The datasets include 3,991.1 MB of 803 data files obtained by the four scientific payloads on the Chang’e-4 lander and rover between December 26, 2021 and January 10, 2022.

The data was posted on the official website of the Lunar and Planetary Data Release System, though none of the press reports from multiple China’s state-run press sources include it. All are simply the same three paragraph story, word for word. That site however is here, though it is entirely in Chinese and the English pages fail to load.

For only 7th time, searchers find meteorite immediately after fall

For only 7th time, searchers on February 15th found a fragment of a meteorite that had only fallen to Earth three days before, and was furthermore only discovered mere hours before it entered the Earth’s atmosphere.

From the tweet of the discoverers:

FRIPON/Vigie-Ciel finds a fragment of asteroid 2023CX1 in Seine Maritime!!! The discovery was made by Loïs Leblanc, an 18-year-old student, part of the field research team.

Vigie-Ciel (“Sky Watchers”) and FRIPON are a volunteer project that searches for meteorites. The asteroid itself was discovered by Hungarian astronomer Krisztián Sárneczky while doing routine survey scan for near Earth asteroids.

The find was the second time Sárneczky has spotted an asteroid just hours before it broke apart in Earth’s atmosphere as a fireball, following an incredible find in March 2022.

By finding meteorites this quickly after arrival scientists get a more pristine sample, since the asteroid has not been exposed to the Earth’s environment for any extended length of time.

Ingenuity completes 43rd flight on Mars, the longest in almost a year

Overview map
Click for interactive map.

The Mars helicopter Ingenuity today successfully completed its 43rd flight on Mars, traveling 1,280 feet for 2 minutes and 26 seconds.

The green dot on the map to the right marks Ingenuity’s position before the flight, with the green lines marking the approximate direction and distance flown. The Perseverance/Ingenuity team has not yet updated its interactive map, so the precise landing spot is not yet available.

This flight was the helicopter’s longest since April 2021, just before the onset of the long six-month-long Martian winter. At that time Ingenuity completed its 28th flight, traveling 1,371 feet. Since then engineers struggled to keep Ingenuity alive during the dark winter, a task made more difficult due to an unexpected higher winter dust storm season.

Winter however is over, the helicopter is now fully charging with no problem, and has new flight software that allows it to go higher and over rougher terrain. In fact, like the last flight, Ingenuity flew farther and longer than planned, as it had been programmed to go 1,235 feet for 2 minutes and 17 seconds. That extra 45 feet and 9 seconds were likely used by the helicopter to locate a safe landing spot.

For perspective, Ingenuity’s total mission was originally planned to last only 30 days, and complete about a half dozen test flights merely to prove the concept of flight on Mars was possible. It has now lasted two years, completed 43 flights, and traveled almost five and a half miles. An amazing engineering achievement by JPL’s engineering team.

The endless volcanic ash of Mars’ Medusae Fossae Formation

The endless volcanic ash of Mars' Medusae Fossae Formation
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and enhanced to post here, was taken on January 6, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows a small but typical area of the Medusae Fossae Formation, what is thought to be the largest volcanic ash deposit on Mars.

The picture itself was a “terrain sample,” taken by the MRO science team not as part of any specific research but to fill a gap in the camera’s schedule so as to maintain its temperature. The terrain itself looks like a field of sand that someone had run a fine comb across. In this case, the comb was the winds of Mars, prevailing from the southeast to the northwest. The crescent-like divots in the picture’s lower right are probably caused by some hard underground feature that the winds cannot blow away. Instead, it blows around, like water in rapids flowing around a rock, and takes the ash with it as it does so.
» Read more

NASA outlines its expected needs as a space station customer

NASA has now published an updated detailed specification of what it will want to do on the four private space stations being built to replace ISS.

NASA published two white papers Feb. 13 as part of a request for information (RFI) for its Commercial Low Earth Orbit Destinations effort to support development of commercial stations. The documents provide new details about how NASA expects to work with companies operating those stations and the agency’s needs to conduct research there.

One white paper lists NASA’s anticipated resource needs for those stations, including crew time, power and volume, broken out for each of the major agency programs anticipated to use commercial stations. Companies had been seeking more details about NASA requirements to assist in the planning of their stations.

,,,The second white paper outlines the concept of operations NASA envisions for its use of commercial space stations. The 40-page document described in detail what it expects from such stations in terms of capabilities, resources and operations, as well as what oversight the agency anticipates having.

At the moment NASA has contracts with four different space station companies or partnerships, Axiom, Blue Origin, Nanoracks and Northrop Grumman, each of which is building its own station. Because NASA will initially be the biggest customer for these stations its requirements will help shape those stations significantly, which is why this information is of critical importance for the private companies.

At the same time, NASA is not dictating specific designs. The agency remains the customer, buying time on private facilities that will be owned privately and be free to sell their product to others. Thus, the designs of these stations might not match exactly what NASA desires, since even now there are other customers interested in buying space station time and space.

“What the heck?!” swirls on Mars


Click for original image.

Time for another “What the heck?!” image on Mars. The picture to the right, cropped to post here, was taken on January 6, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It is what the science team calls a “terrain sample,” which means it wasn’t taken as part of any specific scientific investigation and requested by a scientist. Instead, it was taken to fill a gap in MRO’s schedule. In order to maintain the camera’s proper temperature it is necessary for it to take regular pictures, and sometimes if there is a gap between requested images the science team picks something almost at random to fill the gap.

Sometimes the picture results in something relatively uninteresting. More often they try to pick something intriguing but not yet of interest to any particular researcher. With today’s cool image they certainly found something intriguing, so much so that I haven’t the faintest idea what is going on here.

Clearly, the tan swirls lie on the higher topology, and could be dust covered. The darker hollows in between could be darker because they are so, or because they are in shadow.
» Read more

A glacial river on Mars

A glacial river on Mars
Click for full image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on November 1, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a wonderful example of a glacier-filled canyon on Mars, the ice apparently flowing both along and around mesas as it carves its way downhill.

I think the downhill grade here is to the north, but this could be wrong for the two side canyons on the main canyon’s north side.

Not only is the material in the canyon likely ice, covered with a protective layer of trapped dust and ash that makes the glacier surface look so smooth, the mesa tops are likely impregnated with ice as well. The mesas however have little dust, so the plateaus have a mottled stippled look likely caused by sublimation of that underground ice.

The location of these canyons explains the presence of ice.
» Read more

Winter finally ends for Ingenuity

According to a detailed update today by Travis Brown, Chief Engineer of the Mars helicopter Ingenuity, the helicopter has now finally exited its difficult winter conditions that began in May 2022 and only ended at the end of January 2023.

One month to the day after the Dec. 24 flight attempt, Ingenuity did something it hadn’t done during the previous 260 sols – it slept “warmly” through the entire night. Data leading up to this event had suggested that such a survival was possible, but 8 long months of winter had tempered the team’s optimism. When Ingenuity’s team reviewed the downlinked data, they found that not only had it started living through the night, but had actually begun to bank power in its batteries. We’ve now seen end-of-sol states of charge in our batteries of more than 90% — an unbelievable number just days earlier. All the above means our sleepy friend has finally awoken from its long winter malaise, just in time to race up the Jezero Crater Delta and provide valuable advanced imaging for Perseverance.

Brown describes in detail their struggle for the past eight months to keep Ingenuity alive. That information is going to be crucial in designing future Mars helicopters, including the ones that will return to Jezero Crater sometime in the next decade to grab the core samples Perseverance has deposited for pick up and return to Earth.

Intuitive Machines completes merger with SPAC as it goes public

Intuitive Machines, one of a handful of American companies building lunar landers for NASA and others, has completed its merger with a special purpose acquisition company (SPAC), thus becoming a publicly traded stock but raising less money than expected in the process.

Intuitive Machines said Feb. 13 it had closed its merger with Inflection Point Acquisition Corp., a SPAC that trades on the Nasdaq. The merged company, retaining the Intuitive Machines name, will trade on the Nasdaq starting Feb. 14 under the ticker symbol LUNR.

The companies announced the merger in September 2022, long after the mania surrounding SPACs has cooled both in the space industry and the overall market. Inflection Point had $301 million of cash in trust, and the companies said they had arranged an additional $55 million in investment from the SPAC’s sponsors and a founder of Intuitive Machines, along with $50 million CF Principal Investments LLC, an affiliate of Cantor Fitzgerald & Company. In an investor presentation linked to the merger announcement, the companies anticipated having more than $330 million in cash after transaction expenses.

However, in the Feb. 13 announcement that the merger had closed, the companies announced only $55 million of “committed capital from an affiliate of its sponsor and company founders.”

It appears that many investors in Inflection Point itself (30% of whom had voted against this merger) had pulled their money from the fund, depleting the $301 million that was originally promised. In addition, yesterday’s announcement made no mention of the $50 million that CF had also committed.

Essentially, the company’s future hinges on the success of its first lunar mission, presently scheduled for June. Should it succeed, the company should be able to replace from other investors the funds that it failed to raise in this merger. Should it fail, it is very possible it will go belly up, as it is likely it will find it difficult if not impossible to find further investment capital.

There is of course the possibility that NASA will keep the company afloat with additional funding, but if so it might be a case of throwing good money after bad, something our government is very good at doing.

Cracked ash-filled Martian terrain

Cracked ash-filled fissures on Mars
Click for original image.

Cool image time! The photo to the right, cropped, reduced, and sharpened to post here, was taken on September 26, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The science team labeled this “Possible Pit,” but other than a small dark stain on the rim of a crater north of the section cropped to the right, I could find nothing that even closely resembled a pit. More likely the scientists were referring to the large circular depression in the top center of this picture. It does not at first glance look like a crater, as it has no obvious rim. In fact, almost none of the circular depressions in this image look like craters, as almost none have uplifted rims.

However, it is not clear what caused these dust-filled fractures as well as the image’s many circular depressions. The location, as indicated by the overview map below, does not really help.
» Read more

Trio of colliding galaxies

Trio of colliding galaxies
Click for original image.

Cool image time! The picture above, cropped and reduced to post here, was taken by the Hubble Space Telescope and released today. From the caption:

Three galaxies stand together just right of centre. They are close enough that they appear to be merging into one. Their shapes are distorted, with strands of gas and dust running between them. Each is emitting a lot of light. Further to the left is an unconnected, dimmer spiral galaxy. The background is dark, with a few smaller, dim and faint galaxies and a couple of stars.

Astronomers estimate the colliding galaxies are about 50,000 light years from each other, which for galaxies is quite close. Eventually gravity will cause all three to merge into a single very large galaxy, its shape distorted by the merger. What that shape will be is one of the things astronomers are trying to figure out. At present their theories for galaxy evolution states that as galaxies grow by absorbing smaller nearby neighbors, they evolve from spirals to ellipticals, giant blobs lacking a distinct obvious structure.

Terraced serrated layered mesas on Mars

Terraced mesas on Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on November 19, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a collection of terraced mesas covered with dust of a variety of colors.

The bluish colors suggest exposed bedrock, while the different shades of tan suggest areas covered by dust and volcanic ash. That the tan areas are likely dust is strengthened in that it is found between and on these rough mesas, where dunes are also seen. The dust gets blown in but gets trapped there.

The tan colors however could also indicate different types of bedrock, especially because different terraces seem to be of different shades. We will need more data to determine which, or whether this is a combination of all these geological processes.
» Read more

1 41 42 43 44 45 276