A multitude of strange galaxies

A multitude of strange galaxies
Click for original image.

Cool image time! The picture to the right, reduced and sharpened to post here, was taken by the Hubble Space Telescope and released today. From the caption:

Z 229-15 is one of those interesting celestial objects that, should you choose to research it, you will find defined as several different things: sometimes as an active galactic nucleus (an AGN); sometimes as a quasar; and sometimes as a Seyfert galaxy. Which of these is Z 229-15 really? The answer is that it is all of these things all at once, because these three definitions have significant overlap.

All three classifications involve galaxies with nuclei that are brighter, more energetic, and more massive than the rest of the galaxy. Z229-15 itself is estimated to be 390 million light years away.

Normally I would have cropped the image to center on Z229-15. However, I was struck by the number of other strange galaxies in the distance and on the periphery of the picture. Near the top is a trio of three, none of which appear spiral- or elliptical-shaped. On the right is a galaxy that could be a standard spiral seen edge-on, but its red nucleus is very unusual. And scattered across the bottom half of the image are a number of weirdly shaped galaxies of all types, none of which appear typical.

Be sure to look at the high resolution original. There are more weird galaxies visible there.

Curiosity heads to the west of the Hill of Pillows

Panorama on March 27, 2023 (Sol 3781)
Click for full resolution panorama. The original images can be found here, here, here, here, and here.

Overview map
Click for interactive map.

In my previous post on March 11, 2023 showing Curiosity’s spectacular view at that time in the foothills of Mount Sharp, the main question was: Which route will the rover take in the next few weeks? Based on the panorama above, created from five pictures taken by Curiosity’s right navigation camera today, it now appears that the science team has made its decision and will have the rover traverse to the west of what I label the Hill of Pillows.

The overview map to the right gives the context. The blue dot marks Curiosity’s position three days ago, with the yellow lines indicating the approximate area covered by the panorama. The red dotted line shows the planned route going past the Hill of Pillows to the east.

The science team took a careful look at the terrain in both directions, and decided the route to the west was both more gradual and less rough. This set of images by the navigation camera was now taken to better plan the route up in this hollow among its rock-strewn ground.

Make sure you look at the full resolution version of the panorama. You can see on the horizon the high mesas in the south just beginning to appear.

Ancient Martian landslides

Ancient Martian landslides
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on December 23, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The image was labeled “Landslides in Orson Welles Crater” because the full photo shows at least two large and obvious slides, with the biggest shown to the right.

These avalanches are likely ancient because both have craters on them suggesting the material has not moved for a very long time. Yet when both flowed they did so almost like mud, the material moving downhill almost in a single blobby mass. Both have this look, as do many Martian landslides, which I think is why the scientists usually label them mass wasting events.
» Read more

Hubble spots long term seasonal changes on Uranus

Uranus as seen by Hubble in 2014 and 2022
Click for original image.

Using images of Uranus taken eight years apart by the Hubble Space Telescope, astronomers have detected significant seasonal changes in the atmosphere of the gas giant, caused by its unusual sideways rotation.

The two pictures to the left, realigned and reduced to post here, show the changes. If you look closely you can see the planet’s ring system and its shift to almost face on at present.

[top] — This is a Hubble view of Uranus taken in 2014, seven years after northern spring equinox when the Sun was shining directly over the planet’s equator, and shows one of the first images from the OPAL program. Multiple storms with methane ice-crystal clouds appear at mid-northern latitudes above the planet’s cyan-tinted lower atmosphere. Hubble photographed the ring system edge-on in 2007, but the rings are seen starting to open up seven years later in this view. At this time, the planet had multiple small storms and even some faint cloud bands.

[bottom] — As seen in 2022, Uranus’ north pole shows a thickened photochemical haze that looks similar to the smog over cities. Several little storms can be seen near the edge of the polar haze boundary. Hubble has been tracking the size and brightness of the north polar cap and it continues to get brighter year after year. Astronomers are disentangling multiple effects – from atmospheric circulation, particle properties, and chemical processes – that control how the atmospheric polar cap changes with the seasons. At the Uranian equinox in 2007, neither pole was particularly bright.

To really understand the long term climate of Uranus will likely take centuries, since its year lasts 84 Earth years. Since the beginning of space exploration, we have only had now about forty years of good imagery of the planet, and even that has been sporadic and very incomplete.

Where the flood lava of two gigantic Martian volcanoes meet

Where the flood lava of two gigantic Martian volcanoes meet
Click for original image.

Today’s cool image illustrates once again the importance of looking not simply at the picture but at the surrounding larger context in order to understand the Martian features within the photograph.

The photo to the left, cropped, reduced, and sharpened to post here, was taken on January 31, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The location is at 26 north latitude, so it is in the dry equatorial regions. It shows what appears to be a large Martian flood lava plain, with at least two different flood lava events appearing to flow to the northeast, with the second only partly covering the first.

From this high resolution image it seemed probable that the source of the flow was from the southwest, an assumption that at first glance is strengthened by the overview map below.
» Read more

Ingenuity completes 48th flight on Mars

Overview map
Click for interactive map.

On March 21, 2023 the Mars helicopter Ingenuity successfully completed its 48th flight on Mars, flying 1,305 feet for 149.9 seconds with a top altitude of 39 feet. As has now become routine on all the recent flights, the distance and time in the air exceeded slightly the planned amounts, probably because Ingenuity needed slightly more time to find a good landing spot.

The link provides a very short movie created from images looking down during the flight.

The map to the right provides the context. The green dot and line indicates Ingenuity’s new position and flight path respectively. The blue dot marks Perseverance’s present location, a spot the mission planners had previously targeted as a prime place for obtaining core samples. The red dotted line shows the rover’s planned route.

Since the science team is now using Ingenuity for scouting purposes, its turn towards the rim of Belva Crater suggests they are considering this detour for Perseverance as well.

NASA engineers continue to struggle to save the Flashlight lunar probe

In an update today, NASA reports that engineers continue to troubeshoot the failure of the experimental thrusters on the Lunar Flashlight cubesat, in an effort to improvise a way to get the probe into lunar orbit.

Shortly after launch on Dec. 11, 2022, the operations team for NASA’s Lunar Flashlight determined that three of the four CubeSat’s thrusters were underperforming. This cast doubt on whether the mission could complete its stretch science goal of detecting surface ice at the Moon’s South Pole. After analyzing the situation, team members at NASA’s Jet Propulsion Laboratory and Georgia Tech arrived at a creative maneuvering technique that would use the one fully-functioning thruster to get into planned orbit. But when attempting the modified maneuvers in January, that thruster also experienced a rapid loss in performance and the team determined that Lunar Flashlight would likely be unable to reach its planned near-rectilinear halo orbit around the Moon.

After further troubleshooting, the operations team has been working on ways to restore partial operation of one or more thrusters to keep the spacecraft within the Earth-Moon system. They have had some success but continue to try new things to clear the suspected obstructions in the thruster fuel lines. They have until the end of April to generate the required thrust to preserve the opportunity to allow for monthly flybys of the lunar South Pole.

Though it increasingly appears Lunar Flashlight will not make lunar orbit, the mission is not a failure, since it was first and foremost an engineering mission testing a variety of new cubesat technologies, including the failed thrusters. Their failure and the efforts by engineers to recover them is important data for developing better cubesat thrusters on future such planetary probes.

Confused glaciers in a Martian crater

Confused glaciers in a Martian crater
Click for original image.

Cool image time. The picture to the right, cropped to post here, was taken on February 2, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows a strangely blobby crater in the northern mid-latitudes where glacial features are frequently found inside craters.

In this case however the glacier seems very confused. As this is in the northern hemisphere, you would expect glacial material to survive on the north-facing southern interior slopes of the crater, where there is year-round less sunlight. The mottled eroded terrain in the south part of the crater floor suggests this. However, the crater also clearly has a terraced glacier on its south-facing northern interior slopes.

Why has the glacial material survived in both places, but not in the center of the crater?

In addition, there is that strange roughly circular feature attached to the south side of the crater. What formed it? Is it a glacier on the plains surrounding the crater? Or are we looking at volcanic material?

This crater is also unique. The crater just to its southwest (partly seen in the cropped image above), is a much more typical glacial-filled mid-latitude crater, its interior material more evenly distributed and its circular rim only slightly distorted.
» Read more

No ice inside permanently shadowed crater near Moon’s south pole?

Marvin crater as seen by Shadowcam
Click for original image.

Overview map

Using a camera on South Korea’s lunar orbiter Danuri, dubbed Shadowcam and designed to look into the permanently shadowed craters at the Moon’s poles, scientists have taken an image that sees into the forever dark region of one such crater.

The picture to the right, released on March 13, 2023 by the Shadowcam science team, is of the crater Marvin, located about 16 miles to the east of the south pole. The pink outline indicates the area that is thought to be permanently shadowed.

The second image to the right provides a wider view of the south pole region, with the craters labeled and outlined by the green lines. The orange lines mark permanently shadowed areas. The white box indicates the approximate area covered by the Shadowcam picture. One of the candidate landing sites for Starship, as part of NASA’s Artemis program, is the eastern rim of Shackleton, essentially at the south pole itself.

Previous data suggests that ice should be found in those permanently shadowed areas, because other orbiters have detected evidence of hydrogen there. The Shadowcam picture above however shows nothing that strongly suggests the presence of ice, unless that darker flat area on the floor of the crater is ice-infused dust. If so however, it is quite ancient and solid, based on the presence of several craters within it.

The press release makes no mention of this question, probably because the scientists are still analyzing the data. This first look however suggests the ice is not there, or is in a form that is going to require a lot of processing to extract the water from it.

Samples from Ryugu found to contain uracil, one of the four nucleobases in RNA

Japanese researchers analyzing the samples returned by Hayabusa-2 from the rubble-pile asteroid Ryugu have identified the molecule uracil, one of the four nucleobases that form the molecule RNA.

Hayabusa 2 collected 5.4 grams from two spots on Ryugu and delivered them to Earth on December 6, 2020. Early studies showed the samples contained many organic compounds. That led Oba’s group to analyze two 10-milligram samples using the same sensitive technique they had used earlier on meteorites. The technique can detect nucleic acid bases at levels down to parts per trillion in small samples.

Now, they report in Nature Communications that uracil is present at a level of parts per billion in both Ryugu samples. While this concentration is different than they’d previously found in meteorites, Oba says that might be because the parent bodies of the meteorites and of Ryugu underwent different levels of aqueous alteration and other processes. They also detected niacin (vitamin B3) as well as other organic molecules, but they didn’t find any other nucleobases.

RNA is formed from four nucleobases, uracil, adenine, cytosine, and guanine. To form DNA, the fundamental building block of life, uracil is replaced by thymine.

This data reinforces other data that suggests the formation of these essential molecules for life is relatively common and easy, at least in our solar system.

Dimorphus is dry, based on data obtained before and after DART hit it

Data collected by the ground-based Very Large Telescope (VLT) in Chile before and after the impact by the DART probe in September 2022 has revealed that the rubble-pile asteroid Dimorphos is very dry, with little or no water.

[The astronomers] observed the Didymos–Dimorphos system on 11 occasions, from just before the impact to about a month afterwards. MUSE [one of VLT’s instruments] is able to split the light from the double-asteroid into a spectrum, or rainbow, of colors, to look for emission at specific wavelengths that corresponds to specific molecules. In particular, Opitom’s team searched the ejecta for water molecules and for oxygen that could have come from the break-up of water molecules by the impact. However, no evidence of water was detected. Dimorphos, at least, seems to be a dry asteroid.

You can read the paper here.

Some theories prior to DART’s impact suggested that there could be ice within some inner solar system asteroids. Finding none instead suggests that inner solar system asteroids are very distinct and different from the icy comets and asteroids either coming from or orbiting in the outer solar system.

Webb detects “hot sand clouds” in atmosphere of exoplanet

Using the Webb Space Telescope, astronomers have detected “hot sand clouds” in atmosphere of exoplanet 40 light years away, along with evidence of water, methane, carbon monoxide, carbon dioxide, sodium, and potassium.

You can read the paper here [pdf]. The exoplanet itself appears to have some features that resemble that of a brown dwarf, or failed star, instead of an exoplanet.

Although VHS 1256 b is more on the heavier side of the known exoplanets, its gravity is relatively low compared to more massive brown dwarfs. Such very low-mass stars can only burn deuterium for a relatively short duration. Consequently, the planet’s silicate clouds can appear and remain higher in its atmosphere, where the JWST can detect them. Another reason its skies are so turbulent is the planet’s age. In astronomical terms, it is pretty young. Only 150 million years have passed since it formed. The planet’s heat stems from the recent formation process – and it will continue to change and cool over billions of years.

The sand clouds are hot, in the range of 1,500 degrees Fahrenheit.

These results were obtained as part of an early-release program from Webb, and illustrate the potential of the infrared space telescope for learning many specific details about brown dwarfs and exoplanets.

Russia’s Luna-25 unmanned lunar lander to be delivered to Vostochny in early June


Click for interactive map.

According to Russia’s state-run press, its Luna-25 unmanned lunar lander will finally be delivered to its launchsite in Vostochny in the first ten days of June 2023, after many years of delays.

The press announcement made no mention of a launch date after delivery, though according to an earlier report Roscosmos is aiming for a July 13, 2023 launch date.

The landing site on the Moon is Boguslawsky crater, as indicated by the green dot on the map to the right. If it occurs as planned, it will join three other landers now targeting 2023 lunar landings, Ispace’s Hakuto-R1, Intuitive Machines Nova-C, and India’s Chandrayaan-3, with three of four landing in the Moon’s south pole regions. The white cross marks the location of the south pole itself, on the rim of Shackleton Crater.

Hakuto-R1 enters lunar orbit

Lunar map showing Hakuto-R1's landing spot
Hakuto-R1’s planned landing site is in Atlas Crater.

The lunar lander Hakuto-R1, privately-built by the Japanese company Ispace, has now successfully entered lunar orbit in anticipation of its landing sometime next month.

Tokyo-based ispace said that its HAKUTO-R Mission 1 lander entered orbit at 9:24 p.m. Eastern March 20 after a burn by its main engine lasting several minutes. The company did not disclose the parameters of the orbit but said that the maneuver was a success.

…Entering orbit is the seventh of 10 milestones ispace set for the mission that started with launch preparations. The final three milestones are completing “orbital control maneuvers,” the landing itself and going into a steady state of activities after landing.

The spacecraft carries several payloads, the most significant of which is the United Arab Emirates Rashid rover.

If Hakuto-R1 completes its 10 milestones successfully, it will lay the groundwork for Ispace’s second Hakuto-R mission to the Moon in 2024, and an even larger lander on a third mission to follow, this time built in partnership with the American company Draper and carrying NASA payloads.

A half-mile high Martian cliff on the verge of collapse

A half-mile Martian cliff on the verge of collapse
Click for original image.

Cool image time! The picture to the right, cropped and reduced to post here, was taken on December 24, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows erosion gullies coming down off a mountain side, just north of a massive cliff that I estimate to be around 2,000 to 3,000 feet high.

Note the north-south-trending cracks. These suggest that this entire half-mile-high cliff face is slumping downward, cracking as it does so. The cracks at the start of the high flat-topped thumb-shaped mesa near the image bottom are especially intriguing. They suggest that this entire mesa might eventually separate and give way.

There is a specific reason this cliff face is slumping, as shown in the overview map below.
» Read more

A verde valley on Mars

A verde valley on Mars
Click for original image.

In the southwest where I live, a valley dubbed “verde” (which means “green” in Spanish) is generally a place with a somewhat persistent river with lots of lush plant life. The Verde Valley in Arizona is the perfect example, with “close to 80% of the valley’s land … national forest.”

On Mars there is also a verde valley, but the name is not descriptive in the least. The picture to the right, rotated, cropped, and reduced to post here, was taken on January 22, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and shows one section of the Martian Verde Vallis, draining south to north.

The dark rippled patches inside this shallow canyon are sand dunes. In fact, though MRO has not taken many high resolution images of Verde Vallis, every one shows the valley with further patches of ripple dunes. See for example this image of a section of the valley just a bit farther north.
» Read more

Blobs and jellyfish in space

Blobs and Jellyfish
Click for original image.

Cool image time! The picture to the right, cropped and reduced to post here, was taken by the Hubble Space Telescope and released today.

The galaxy JW100 features prominently in this image from the NASA/ESA Hubble Space Telescope, with streams of star-forming gas dripping from the disc of the galaxy like streaks of fresh paint. These tendrils of bright gas are formed by a process called ram pressure stripping, and their resemblance to dangling tentacles has led astronomers to refer to JW100 as a ‘jellyfish’ galaxy. It is located in the constellation Pegasus, over 800 million light-years away.

Ram pressure stripping occurs when galaxies encounter the diffuse gas that pervades galaxy clusters. As galaxies plough through this tenuous gas it acts like a headwind, stripping gas and dust from the galaxy and creating the trailing streamers that prominently adorn JW100. The bright elliptical patches in the image are other galaxies in the cluster that hosts JW100.

The image was part of a research project studying star formation in the tendrils of jellyfish galaxies.

The blob near the top of the image is another galaxy in this same galaxy cluster. It is an elliptical galaxy that also happens to have two central nuclei, caused when two smaller galaxies merged. The central regions of each have not yet merged into one.

The ubiquitous presence of ice in the Martian mid-latitudes

Ice in the Martian mid-latitudes
Click for original image.

Cool image time! The picture to the right, rotated, cropped, rotated, and sharpened to post here, was taken on November 28, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Labeled merely as a “crater with mesa”, it gives us another example of the presence of glacial ice in the mid-latitudes of Mars.

That mesa is what planetary scientists have labeled “concentric crater fill,” a glacial feature found in numerous craters throughout the mid-latitude bands from 30 to 60 degrees latitude. The ground in the terrain surrounding the crater could be also be impregnated with ice, but based on the location as shown in the overview map below, it is just as likely to be lava.

In fact, the location of this particular crater illustrates why concentric crater fill might become the best source of ice for future colonists.
» Read more

Both India’s Chandrayaan-3 and Intuitive Machine’s Nova-C lunar landers pass vibration tests


Click for interactive map.

According to separate announcements just released, both India’s Chandrayaan-3 lander/rover and Intuitive Machine’s private Nova-C lunar lander have passed their last ground tests and are now ready for launch to the Moon later this year.

India’s space agency ISRO successfully completed testing of its Chandrayaan-3 lunar lander/rover in early March, completing vibration tests of the spacecraft and proving it will be able to survive the stresses during launch. The spacecraft successfully completed radiation testing in February.

ISRO is now targeting June 2023 for Chandrayaan-3’s launch.

Intuitive Machines meanwhile announced yesterday that its Nova-C lander has completed vibration testing, and is ready for launch later this year.

The map to the right shows the landing sites of these planned landers near the Moon’s south pole (indicated by the white cross), as well as Russia’s long-delayed lunar lander, Luna-25, which is now targeting a July launch.

Endless ripple dunes in Mars’ third largest impact basin

Ripple dunes in Mars' third biggest impact basin
Click for original image.

Cool image time! The picture to the right, cropped to post here, was taken on November 30, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The section cropped shows only a small portion of the endless ripple dunes seen in this area. The color strip provides us some interesting other details as well as mysteries. The orange indicates dust on the ridges as well as the higher terrain near the center of the picture. The green in the hollows as well as to the east and west suggests coarser materials that have settled in lower elevations. This supposition is reinforced by the orange area near the bottom of the picture where the ripples have mostly dissipated. This is a high spot, and we appear to be looking at a dusty surface. (This impression is clearer in the full image.)

The latitude is high, 48 degrees south, but as far as I know orbital images have not found a lot of ice evidence in this part of Mars.
» Read more

Another study finds evidence of active volcanism on Venus

Changes in volcanic vent on Venus over eight months
Click for original image.

Using archival data from the Magellan spacecraft that orbited Venus in the early 1990s scientists think they have identified an active vent that appeared to change shape based on radar images taken eight months apart.

From the abstract of their paper:

We examine volcanic areas on Venus that were imaged two or three times by Magellan and identify a ~2.2 km2 volcanic vent that changed shape in the eight months between two radar images. Additional volcanic flows downhill from the vent are visible in the second epoch images, though we cannot rule out that they were present but invisible in the first epoch due to differences in imaging geometry. We interpret these results as ongoing volcanic activity on Venus.

This result is different that other research released last month that used Magellan data to identify geological features on Venus most likely to be active. In today’s results the scientists think they have spotted an actual volcanic eruption, as shown in the two images to the right. The image is taken from Figure 2 of the paper, with the changes in the center bottom vent clearly visible.

There is much uncertainty in these results that must be mentioned. The images are not optical but radar, so the scientists had to do a lot of computer processing to get the final result. They also compared this work with computer simulations to help confirm their conclusions.

The results also leave open the question of the total amount of volcanism presently active on Venus. As the scientists note in their conclusion, “With only one changed feature, we cannot determine how common currently active volcanism is on Venus.”

Nonetheless, the research using both new and archival data in the past thirty years is increasingly telling us that there is some active volcanism on Venus, hidden beneath its thick hellish cloudy atmosphere.

Reassessed fuel measurements give Mars Odyssey until 2025 before it runs out

Using more refined methods for measuring the fuel left on Mars Odyssey, the oldest orbiter circling Mars at this time, engineers have determined that it will not run out until 2025, not this year as previously thought.

Mars Odyssey has been in orbit around Mars since 2001. The fuel is used by thrusters to help maintain the spacecraft’s orientation, which is mostly done by reaction wheels, or gyroscopes. We should therefore not be surprised if by 2025 engineers figure out a way to get the reaction wheels to do the whole job, when the fuel runs out.

Geological evidence of past glacier found in Mars’ dry equatorial regions

Overview map

Scientists have uncovered geological evidence of a past glacier in westernmost end of the giant Martian canyon Valles Marineris, right at the point where it transitions into the complex chaos region dubbed Noctis Labyrinthus. The white dot on the map to the right indicates the location.

The surface feature identified as a “relict glacier” is one of many light-toned deposits (LTDs) found in the region. Typically, LTDs consist mainly of light-colored sulfate salts, but this deposit also shows many of the features of a glacier, including crevasse fields and moraine bands. The glacier is estimated to be 6 kilometers long and up to 4 kilometers wide, with a surface elevation ranging from +1.3 to +1.7 kilometers. This discovery suggests that Mars’ recent history may have been more watery than previously thought, which could have implications for understanding the planet’s habitability.

What we’ve found is not ice, but a salt deposit with the detailed morphologic features of a glacier. What we think happened here is that salt formed on top of a glacier while preserving the shape of the ice below, down to details like crevasse fields and moraine bands,” said Dr. Pascal Lee, a planetary scientist with the SETI Institute and the Mars Institute, and the lead author of the study. [emphasis mine]

You can read the paper here [pdf]. The research specifically suggests that near surface water ice in the dry equatorial regions of Mars could have been there much more recently that previously believed. It also suggests, by the rarity of this discovery, that there is likely almost no near surface ice in the equatorial regions, at present.

Perseverance captures a movie of Ingenuity’s 47th flight on Mars

Ingenuity shortly after take-off on its 47th flight
Click for full movie.

Overview map
Click for interactive map.

During Ingenuity’s 47th flight on Mars on March 9, 2023, one of Perseverance’s high resolution camera’s took rapid-fire images of the helicopter’s take-off and initial flight, from which the science team created a movie.

The overview map to the right provides the context for that movie at the link. The blue dot marks Perserverance’s location, with the yellow lines indicating the approximate area seen in the movie. The smaller green dot and line indicates Ingenuity’s take-off point and part of its flight seen in the movie, with the larger green dot its landing spot. From the press release:

This video shows the dust initially kicked up by the helicopter’s spinning rotors, as well as Ingenuity taking off, hovering, and beginning its 1,444-foot (440-meter) journey to the southwest.

At take-off Ingenuity was 394 feet away from Perseverance.

Firefly wins its second NASA contract to land payloads on the Moon

Capitalism in space: Firefly announced today that it has won a $112 million NASA contract to use its Blue Ghost lunar lander to bring three instruments to the Moon, one into orbit and two on the ground on the far side of the Moon.

Before landing on the Moon, the company’s Blue Ghost transfer vehicle will deploy the European Space Agency’s Lunar Pathfinder satellite into lunar orbit to provide communications for future spacecraft, robots, and human explorers. After touching down on the far side of the Moon, the Blue Ghost lunar lander will deliver and operate NASA’s S-Band User Terminal, ensuring uninterrupted communications for lunar exploration, and a research-focused payload that measures radio emissions to provide insight into the origins of the universe.

The NASA press release provides more details about the three payloads.

This is Firefly’s second NASA lunar lander contract. The first is scheduled to land in 2024 and deliver ten NASA science instruments to Mare Crisium, the large mare region in the eastern side of the Moon’s visible hemisphere. This second flight is tentatively scheduled to launch in 2026.

A Martian crater, ice, and dust devil tracks

A Martian crater, ice, and dust devil tracks
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on January 2, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It is once again a terrain sample image, taken not for any specific research but to fill a gap in the schedule so as to maintain the camera’s proper temperature.

What this picture shows is that even though Mars has a thin atmosphere that produces dust devils, the propagation of dust devils is not uniform across the red planet’s surface. In this picture there are a lot of devil tracks, going in many different directions. Yet few of the many cool images I post from MRO show this number of tracks. In many cases the ground might not be agreeable to leaving tracks, but that cannot be the entire explanation.
» Read more

Potential Artemis-3 landing site on the Moon

The landing zone for the Artemis-3 mission to the Moon

Overview map

The panorama above was released today by the Lunar Reconnaissance Orbiter (LRO) science team, and shows one of the candidate landing sites (arrow) where Starship could land as part of the Artemis-3 mission to the Moon.

The map of the south pole to the right, created from LRO images and annotated by me, gives the context. The yellow lines indicate the approximate area covered by the panorama. The terrain here is rugged, to put it mildly. As the science team notes,

Imagine the view from the summit; it rises more than 5000 meters (16,400 feet) above its base. Off in the distance, you could see a 3500 meter (11,480 feet) tall cliff. One could argue that the sheer grandeur of this region makes it a prime candidate. But then again, a landing here might be too exciting?

That 11,480-foot-high cliff is the crater wall to the right of the arrow. Make sure you go to the link to view the original image. This will be a spectacular place to visit. Whether the astronauts however will be able to find out anything about ice in the shadowed crater floor thousands of feet below them remains questionable.

Artemis-3 is presently scheduled for 2025 but no one should be surprised if it is delayed.

Splats on Mars!

Splats on Mars
Click for original image.

Cool image time! The picture to the right, cropped and sharpened to post here, was taken on February 3, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a number of crater splats of varying sizes. If you look at the full image, you will find several even bigger splats to the north of the one in the picture to the right. You will also see many more similar-sized crater splats to the south.

I cannot provide any confident explanation about what caused these splats, other than to assume that most here are secondary impacts from ejecta thrown out by a larger impact somewhere nearby. I also assume all these small impacts occurred at the same time because they all appear to have hit the ground when it had the same thick liquid consistency, a condition that was probably temporary. Note for example how many of the other craters in the full image do not have this same splattered look.
» Read more

Hubble looks at a nearby dwarf galaxy

A nearby dwarf galaxy
Click for original image.

Cool image time! The photo to the right, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope as part of a continuing project to capture high resolution images of every nearby galaxy, which in this particular case the caption describes as follows:

UGCA 307 hangs against an irregular backdrop of distant galaxies in this image from the NASA/ESA Hubble Space Telescope. The small galaxy consists of a diffuse band of stars containing red bubbles of gas that mark regions of recent star formation, and lies roughly 26 million light-years from Earth in the constellation Corvus. Appearing as just a small patch of stars, UGCA 307 is a diminutive dwarf galaxy without a defined structure — resembling nothing more than a hazy patch of passing cloud.

The red regions of star formation are significant, as they indicate that even in a tiny galaxy like this it is possible for there to be enough gas and dust to coalesce into new stars.

Astronomers living on a world inside this galaxy have an advantage over astronomers on Earth. There is no large galaxy like the Milky Way blocking their view of the cosmos in one direction. They can see it all, even in directions looking through UGCA 307.

1 42 43 44 45 46 279