Royal Astronomical Society ends blacklisting of James Webb

That’s nice of them: The Royal Astronomical Society in Britain last week announced that it has ended its blacklisting of James Webb, the man who headed NASA during the 1960s space race, by once again permitting writers of science papers for its Monthly Notices journal to use the full name of the James Webb Space Telescope.

The Royal Astronomical Society (RAS) previously criticized NASA for not immediately addressing concerns that Webb persecuted queer employees; the NASA-led James Webb Space Telescope (JWST or Webb) that launched in December 2021 is named after him. But with new information to hand suggesting Webb played no direct role in these issues, Webb’s name can now reappear in scientific papers, the RAS stated Dec. 22.

“The RAS will now allow authors submitting scientific papers to its journals to use either ‘James Webb Space Telescope’ or the acronym ‘JWST’ to refer to the observatory,” RAS officials wrote. The major journals of the RAS include the Monthly Notices of the Royal Astronomical Society (MNRAS), one of the top astronomical journals worldwide.

The society backed off from its position after NASA published a long detailed report documenting the utter falsehood of the claim. Too bad this so-called science organization didn’t consider the evidence itself before issuing its blacklist order. One would think scientists above all would consider evidence, not undocumented slanders, as essential before condemning a person.

A “What the heck?” glacier image on Mars

Glacial material on Mars
Click for full image.

Sometimes a cool image goes from bafflement to obvious as you zoom into it. The cool image to the right, cropped to post here, does the opposite. It was taken on October 11, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). I have purposely cropped it at full resolution, so that its eroded glacier nature is most obvious.

The cracks and hollows are likely caused by the sublimation of the near surface underground ice, breaking upward so that the protective surface layer of debris and dust collapses at some points, and cracks at others.

The overview map below further confirms the likelihood that we are looking at glacial features, but when we also zoom out from this close-up we discover things are not so easily explained.
» Read more

Using reflected light from Jupiter to photograph Ganymede’s night side

Ganymede as seen in the reflected light of Jupiter
Click for full image.

During Juno’s June 7, 2021 close fly-by of Ganymede, scientists used its instruments to obtain the first good image of a part of this Jupiter moon. What made the achievement especially amazing was that the area photographed was only lit by the reflected light from Jupiter, the equivalent of its “earthshine.” From the paper’s abstract:

On 7 June 2021, the Juno spacecraft flew within about 1,000 km of the surface of Jupiter’s largest moon, Ganymede. The Mission used their sensitive navigation camera to photograph the moon’s dark side where it was lit only by scattered sunlight from Jupiter. This new imaging approach revealed multiple surface features, including a patchwork of different surface textures (such as grooved terrain), several craters, and ejecta deposits. These features had not been visible in images collected by previous spacecraft.

The picture to the right is from figure 2 of the paper, cropped and reduced to post here. It shows a region on Ganymede that in the earlier images had shown few details because the lighting was poor and thus features were not easily discerned (as can be seen by the inset in the lower right). In the new picture, the only light was reflected from Jupiter, and its low angle brings out the surface topography.

Today’s blacklisted American: Black scientist blacklisted for doing good research

Oluseyi Hakeem, blacklisted
Hakeem Oluseyi, Space Science Education Lead
for NASA’s Science Mission Directorate

They’re coming for you next: Today’s blacklist column describes an effort to not only cancel from history the man who led NASA for almost the entire 1960s space race, but to also blackball a scientist for doing good research that proved the campaign was not based on any facts.

Shortly before the launch of the James Webb Space Telescope last year, a petition was instigated to get it renamed because of accusations that Webb had persecuted homosexuals during his term as NASA administrator in the 1960s. As is now typical of our modern bankrupt intellectual class, as soon as this petition was issued more than 1,700 people signed it, all accepting at face value its accusations against Webb without any further research.

One scientist, who happened to be black, took a more detailed look at those accusations however and found them to be spurious. As Hakeem Oluseyi wrote:
» Read more

Finding Martian glaciers from orbit

Glacier flow on Mars
Click for full image.

Today’s cool image is a great example of the surprises one can find by exploring the archive of the high resolution pictures that Mars Reconnaissance Orbiter (MRO) has produced since it arrived in Mars orbit back in 2006. The picture to the right, rotated, cropped, and reduced to post here, was taken by MRO’s high resolution camera back on May 4, 2017. I only found it because I had picked out a October 24, 2022 high resolution image that covered a different area of this same flow feature just to the north east. In trying to understand that 2022 picture I dug to see other images had been taken around it, and found the earlier 2017 photo that was even more interesting.

Neither however really covered the entire feature, making it difficult to understand its full nature. I therefore searched the archive of MRO’s context camera, which has imaged the entire planet with less resolution but covering a much wider area per picture. The context camera picture below captures the full nature of this feature.
» Read more

Cones, mounds, and layers of Martian ice?

Cones, mounds, and layers of Martian ice?
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on September 10, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The location is at 38 degrees north latitude, in the Martian northern lowland plains. At this latitude in these plains the geological features seen in high resolution pictures almost always invoke near surface ice, including processes that disturb that underground ice layer.

This picture is no different. Not only does it appear that a glacier is flowing down from the top of east-west ridge, the middle mound includes a crater with its southeast rim gone and appears filled with material that suggests ice.

The greater geographic context of this location can be seen in the overview map below.
» Read more

A long-armed galaxy

Galaxy with long and faint tidal streams
Click for full image.

Cool image time! The photo to the right, cropped, enhanced, and reduced to post here, was taken by the Hubble Space Telescope as part of a survey of peculiar looking galaxies.

The peculiar spiral galaxy ESO 415-19, which lies around 450 million light-years away, stretches lazily across this image from the NASA/ESA Hubble Space Telescope. While the centre of this object resembles a regular spiral galaxy, long streams of stars stretch out from the galactic core like bizarrely elongated spiral arms. These are tidal streams caused by some chance interaction in the galaxy’s past, and give ESO 415-19 a distinctly peculiar appearance.

ESO 415-19’s peculiarity made it a great target for Hubble. This observation comes from an ongoing campaign to explore the Arp Atlas of Peculiar Galaxies, a menagerie of some of the weirdest and most wonderful galaxies that the Universe has to offer. These galaxies range from bizarre lonesome galaxies to spectacularly interacting galaxy pairs, triplets, and even quintets. These space oddities are spread throughout the night sky, which means that Hubble can spare a moment to observe them as it moves between other observational targets.

I have intentionally brightened the galaxy to make the two faint two tidal streams more obvious. That they are so faint compared to the galaxy itself is in itself a mystery.

Crater at the edge of the Martian south pole ice cap

Oblique view of south pole crater
Click for full image.

Overview map

Cool image time! The oblique panorama above, reduced and sharpened to post here, was created from an image taken on May 19, 2022 by the European orbiter Mars Express. Its location on edge of the layered deposits of ice and dust that form most of the Martian southern ice cap is indicated by the white rectangle on the overview map to the right. From the press release:

While it may look like a winter wonderland, it was southern hemisphere spring at the time and ice was starting to retreat. Dark dunes are peeking through the frost and elevated terrain appears ice-free.

Two large impact craters draw the eye, their interiors striped with alternating layers of water-ice and fine sediments. These ‘polar layered deposits’ are also exposed in exquisite detail in the rusty red ridge that connects the two craters.

The scattered white patches are either water frost, or the winter mantle of dry ice, both now sublimating away with the coming of spring.

The black line on the overview map indicates the extent of the layered deposits, and suggest that the ridgeline is not considered part of that ice cap layer, in contradiction to the press release language above.

Which is it? I would guess the answer is simply the uncertainty of science. Some scientists took a look here and decided the ridge was actually a base layer sticking up through the layered deposits. The European scientists who took this picture have instead concluded, based on the image, that the ridge is part of the layer deposits.

NASA requesting proposals for raising Hubble’s orbit

NASA has published a request for proposals from the private commercial space industry for a possible future mission to raise Hubble’s orbit.

NASA published a request for information (RFI) Dec. 22 asking industry how they would demonstrate commercial satellite servicing capabilities by raising the orbit of Hubble. The agency said it is looking for technical information about how a company would carry out the mission, the risks involved and the likelihood of success.

NASA emphasized in the RFI that it had no plans to procure a mission to reboost Hubble. “Partner(s) would be expected to participate and undertake this mission on a no-exchange-of-funds basis,” the document stated, with companies responsible for the cost for the mission.

Apparently, this RFI was issued as a direct result of the agreement between NASA and SpaceX to study a Dragon mission to do exactly this, which in turn was prompted by Jared Isaacman, as part of his private Polaris program of manned Dragon/Starship space flights. I suspect that NASA officials realized that not only were their engineering advantages to getting more proposals, there were probably legal and political reasons for opening the discussion up to the entire commercial space community.

Ideally, a Hubble reboost mission should occur by 2025, though the telescope’s orbit will remain stable into the mid-2030s.

Juno experienced data download issue during most recent Jupiter close flyby

Right after Juno made its 47th close fly-by of Jupiter on December 14, 2022, the download of the obtained data was suddenly disrupted, forcing engineers to put Juno into safe mode.

The issue – an inability to directly access the spacecraft memory storing the science data collected during the flyby – was most likely caused by a radiation spike as Juno flew through a radiation-intensive portion of Jupiter’s magnetosphere. Mission controllers at NASA’s Jet Propulsion Laboratory and its mission partners successfully rebooted the computer and, on Dec. 17, put the spacecraft into safe mode, a precautionary status in which only essential systems operate.

As of Dec. 22, steps to recover the flyby data yielded positive results, and the team is now downlinking the science data. There is no indication that the science data through the time of closest approach to Jupiter, or from the spacecraft’s flyby of Jupiter’s moon Io, was adversely affected. The remainder of the science data collected during the flyby is expected to be sent down to Earth over the next week, and the health of the data will be verified at that time. The spacecraft is expected to exit safe mode in about a week’s time. Juno’s next flyby of Jupiter will be on Jan. 22, 2023.

That such disruptions have actually not occurred very often on Juno is somewhat remarkable, considering the hostile nature of the environment around Jupiter.

Perseverance experiment generates new record of breathable oxygen on Mars

MOXIE, an experiment on the rover Perseverance to see if breathable oxygen could be generated from the carbon dioxide in the Martian atmosphere, has set a new production record.

The atmosphere around Jezero Crater, the present location of Perseverance, reached peak density for the year mid (Earth) summer. This presented the perfect opportunity for the MOXIE science team to step on the accelerator and test how fast we could safely produce oxygen. This test occurred on Sol 534 (Aug. 22, 2022) and produced a peak of 10.44 grams per hour of oxygen. This represented a new record for Martian oxygen production! The team was thrilled to surpass our design goal of 6 grams per hour by over 4.4 grams. The peak rate was held for 1 minute of the 70 minutes oxygen was produced during the run.

MOXIE’s next opportunity to operate came recently. Despite the decreasing density of the Mars atmosphere, on Sol 630 (Nov. 28, 2022) MOXIE managed to break the record again and produce nearly 10.56 grams per hour at peak. Oxygen production was sustained for a 9.79 grams per hour for nearly 40 minutes.

These numbers may seem small, but MOXIE production runs are limited by available rover power. In addition, MOXIE technology was miniaturized to accommodate the limited space available on the rover. A MOXIE for a human Mars mission would produce oxygen nearly 200 times faster and work continuously for well over a year.

Ten grams per hour is about half what one person needs to breathe, and is a little less than a large tree produces. Moreover, MOXIE had earlier conducted seven other runs, producing about six grams of oxygen per hour during each.

Based on these tests, MOXIE has unequivocally proven that future human explorers will not need to bring much oxygen with them, and will in fact have essentially an unlimited supply, on hand from the red planet itself. More important, MOXIE has also proven that the technology to obtain this oxygen already exists.

All we need to do is plant enough MOXIE trees on Mars.

Bursting lava bubbles on Mars

Burst lava bubbles on Mars
Click for full image.

Cool image time! The photo to the right, rotated, cropped, reduced, and sharpened to post here, was taken on September 4, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

I really have no idea what caused these distorted cones. My intuition (a dangerous thing to rely on when it comes to science) suggests these are volcanic in nature. Imagine hot lava with gas bubbling up from below. Periodically a gas bubble will burst on the surface releasing the gas. Depending on temperature, that bursting bubble could harden in place.

The overview map below provides some support for my intuition, but it also suggests this first hypothesis could be completely wrong, something that does not surprise me in the least.
» Read more

Perseverance deposits first core sample for pickup later

Perseverance's location December 21, 2022
Click for interactive map.

The Mars Perseverance rover has now deposited its first core sample on the floor of Jezero Crater for pickup later by a future Mars helicopter for eventual return to Earth.

A titanium tube containing a rock sample is resting on the Red Planet’s surface after being placed there on Dec. 21 by NASA’s Perseverance Mars rover. Over the next two months, the rover will deposit a total of 10 tubes at the location, called “Three Forks,” building humanity’s first sample depot on another planet. The depot marks a historic early step in the Mars Sample Return campaign.

The blue dot on the map to the right shows this location. The green dot shows Ingenuity’s present position. The red dotted line the rover’s future travel route.

InSight mission ended

Location of InSight's largest quakes
The white patches mark the locations on Mars of the largest quakes
detected by InSight

NASA today announced that it has officially ended the mission of the InSight lander on Mars.

Mission controllers at the agency’s Jet Propulsion Laboratory (JPL) in Southern California were unable to contact the lander after two consecutive attempts, leading them to conclude the spacecraft’s solar-powered batteries have run out of energy – a state engineers refer to as “dead bus.”

NASA had previously decided to declare the mission over if the lander missed two communication attempts. The agency will continue to listen for a signal from the lander, just in case, but hearing from it at this point is considered unlikely. The last time InSight communicated with Earth was Dec. 15.

Other than the success of InSight’s seismometer, this project was mostly a failure. Its launch was delayed two years, from 2016 to 2018, because of problems with the original French seismometer, forcing JPL to take over. Then its German-made mole digger failed to drill into the Martian surface, causing the failure of the lander’s second instrument, a heat sensor designed to measure the interior temperature of Mars.

Fortunately the seismometer worked, or otherwise it would have been a total loss. That data has told us much about Mars and its interior.

Webb in safe mode intermittently during the past two weeks

According to a short update today from the science team, the Webb Space Telescope went into safe mode on December 7, 2022 and was in that state “intermittently” through December 20, 2022 because of a software issue.

The James Webb Space Telescope resumed science operations Dec. 20, after Webb’s instruments intermittently went into safe mode beginning Dec. 7 due to a software fault triggered in the attitude control system, which controls the pointing of the observatory. During a safe mode, the observatory’s nonessential systems are automatically turned off, placing it in a protected state until the problem can be fixed. This event resulted in several pauses to science operations totaling a few days over that time period. Science proceeded otherwise during that time. The Webb team adjusted the commanding system, and science has now fully resumed.

It would be nice to have a more detailed description of that “software fault”, and how it affected the attitude control system. Such things can be very trivial, or they can be disastrous. NASA has a responsibility to tell the public which.

The Wuhan panic underlines how scientists have abandoned the search for truth

Modern science
Modern science

For almost three years I have been documenting endlessly the utter failure of almost every policy imposed by politicians and government health officials in response to the COVID epidemic. From masks to social distancing to lockdowns to COVID shot mandates, none of their draconian rules have done anything to stop the spread of the Wuhan flu, which was always impossible anyway.

Even worse than these bad policies however has been the behavior of the scientific community the past three years. This community has increasingly put politics and narrative above the search for truth, a focus that signals a terrible cultural change that is so horrible its consequences can barely be measured.

To understand this tragedy we must first go back to what science and government once believed about epidemics. The traditional infectious disease policies that doctors and governments had successfully used for more than a century, based on real research and an honest appraisal of the facts by scientists, always recognized that it was impossible to “stop the spread” of a respiratory illness. What worked best was to protect the aged and sick, whom such diseases could kill, while allowing the virus to quickly spread through the rest of the healthy population in order to quickly create a herd immunity that would choke off the virus’s early most virulent strains. The disease would then mutate to milder forms — essentially a cold — that the aged and weak could fight off.

The virus of COVID-19 has done exactly this, but along the way it killed many more older and sick people then necessary, because today’s modern petty tyrants — encouraged by many scientists — decided instead to toss that past knowledge out. Herd immunity was delayed by the lockdown policies, and most governments did little to protect the aged and sick, with some governments even acting to introduce the virus to these threatened populations.

To underline the failure of these policies, here are just a small recent sampling of the growing research outlining the failures of masks, social distancing, and lockdowns:
» Read more

The same region on Ganymede, as seen by Voyager-1 in 1979 and Juno in 2021

Ganymede compared between Voyager-1 and Juno
Click for full image.

When the Jupiter orbiter Juno did a close pass of the moon Ganymede on June 7, 2021, it took four pictures, covering regions mostly photographed for the first time by Voyager-1 in its close fly-by in 1979.

Scientists have now published the data from this new fly-by. Though Juno’s higher resolution pictures revealed many new details when compared with the Voyager-1 images from four decades earlier, the scientists found no changes. The comparison image, figure 2 of their paper, is to the right, reduced and sharpened to post here.

A flicker comparison between the registered JunoCam and Voyager reprojected mosaics revealed no apparent new impact features. Given the high albedo of fresh craters on Ganymede, with high albedo ejecta deposits two or three times the diameter of the craters themselves, we argue that new craters as small as 250 m diameter would be detectable in images at these 1 km per pixel scales. Extrapolating Ganymede cratering rates from Zahnle et al. (2003) below 1 km, the probability of JunoCam observing a new crater over 12.2 million km2 in 42 years is 1 in 1500, consistent with none being observed.

In other words, at these resolutions finding no new impacts is not a surprise.

Of the new features detected, the Juno images could see more details in the bright rays emanating from the crater Tros (in the lower center of both images), and thus found “…terrain boundaries previously mapped as ‘undivided’ or as ‘approximate’, several large craters, and 12 paterae newly identified in this region.”

Paterae resemble craters but are thought to be a some form of volcanic caldera. Their geological origin however is not yet completely understood.

The paper’s conclusion is actually the most exciting:

The insight gained from this handful of images makes it likely in our opinion that new observations from the upcoming JUICE and Europa Clipper missions will revolutionize our understanding of Ganymede.

Kepler’s first discovered exoplanet is spiraling into its aging star

Measurements of the orbit of first exoplanet discovered by the Kepler space telescope have determined that its orbit is very slowly shrinking, and that it will eventually spiral into its aging sun.

In the case of Kepler-1658b, according to the new study, its orbital period is decreasing at the miniscule rate of about 131 milliseconds (thousandths of a second) per year, with a shorter orbit indicating the planet has moved closer to its star.

Detecting this decline required multiple years of careful observation. The watch started with Kepler and then was picked up by the Palomar Observatory’s Hale Telescope in Southern California and finally the Transiting Exoplanet Survey Telescope, or TESS, which launched in 2018. All three instruments captured transits, the term for when an exoplanet crosses the face of its star and causes a very slight dimming of the star’s brightness. Over the past 13 years, the interval between Kepler-1658b’s transits has slightly but steadily decreased.

The scientists think tidal forces are causing the orbit to shrink. The star itself is old and beginning to expand as it evolves towards its own stellar death.

A congregation of Martian dust devils

A congregation of Martian dust devils
Click for full image.

Cool image time! The photo to the right, rotated, cropped, reduced, and sharpened to post here, was taken on September 9, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a spot on Mars where, as indicated by the many many tracks, dust devils routinely develop and travel across the surface.

Though this whole region appears to favor dust devils, within it are places that are even more favored. For example, the number of tracks on the northern and eastern slopes of that small hill at center left practically cover the surface, while the hill’s western and southern slopes are almost untouched.

Both the overview map and the global Mars map below provide the full context.
» Read more

Perseverance’s planned route up onto the Jezero Crater delta

Perseverance's future route onto the delta
Click for original image.

Even as the Perseverance science team prepares to cache the ten first core samples on the surface of Mars for later pickup by a future Mars helicopter for return to Earth, they have also released the planned route they intend to follow as they drive the rover up onto the delta that flowed into Jezero Crater in the distant past.

The black line on the map to the right shows that route, with the black dots indicating points in which further core samples will likely be taken. The red dot indicates Perseverance’s present position, with the white line indicating its past travels. The green dot marks Ingenuity’s present position.

Astronomers identify what they think are the Milky Way’s first stars

The concentration of ancient stars in the Milky Way's core region
The concentration of ancient stars in the Milky Way’s core region.
Click for originial image.

The uncertainty of science: Using data produced by the European space telescope Gaia, combined with computer analysis, astronomers think they have identified the Milky Way’s first stars, all located within 30,000 light years of the galaxy’s core region.

The researchers began by locating a sample of two million bright red giant stars with the right spectra, using computer neural network machine learning.

With that sample, it proved comparatively easy to identify the ancient heart of the Milky Way galaxy – a population of stars that Rix has dubbed the “poor old heart”, given their low metallicity, inferred old age, and central location. On a sky map, these stars appear to be concentrated around the galactic center. The distances conveniently supplied by Gaia (via the parallax method) allow for a 3D reconstruction that shows those stars confined within a comparatively small region around the center, approximately 30,000 light-years across

The stars in question neatly complement Xiang’s and Rix’s earlier study of the Milky Way’s teenage years: They have just the right metallicity to have brought forth the metal-poorest of those stars that, later on, formed the Milky Way’s thick disk. Since that earlier study provided a chronology for thick-disk formation, this makes the ancient heart of the Milky Way older than about 12.5 billion years.

While the uncertainties of this scientific result are huge, it still helps identify the beginnings of the Milky Way, its initial size, and the kind of stars that existed here at that time.

InSight fails to respond during scheduled communications session

InSight's daily power levels as of December 12, 2022

Since December 15, 2022 engineers have been unable to contact the Mars InSight lander, which likely means its power levels have finally fallen so low that the spacecraft is no longer functioning.

On Dec. 18, 2022, NASA’s InSight did not respond to communications from Earth. The lander’s power has been declining for months, as expected, and it’s assumed InSight may have reached its end of operations. It’s unknown what prompted the change in its energy; the last time the mission contacted the spacecraft was on Dec. 15, 2022.

The graph to the right shows the decline in InSight’s power levels since May. The atmosphere has been clearing following the dust storm in October, indicated by the drop in the tau level. Normal tau levels outside of dust storm season are around 0.6-0.7. It is therefore likely that as this dust cleared, it also settled on InSight’s solar panels, and reduced their ability to generate power to the point the spacecraft ceased functioning.

This is very much the same thing that put the rover Opportunity out of business in 2019.

According to this update, engineers are going to continue to try to contact the lander, but it is likely that this effort will end in about a week, should no contact be successful.

Big sink near the Martian south pole

Big sink near the Martian south pole
Click for full image.

Cool image time! The photo to the right, rotated, cropped, reduced, and sharpened to post here, was taken on September 12, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The image is rotated so that south is at the top. The science team labels this a “subsidence feature,” or in plain English, a sinkhole.

Its perfectly circular shape, plus its central peak, strongly suggests we are looking at an impact crater. However, the lack of a raised rim of debris, produced by the ejecta from the impact, raises questions about this conclusion, and is one reason why the scientists think this is a sinkhole instead. Its shape however could be telling us that this sink is simply mirroring the existence of a buried crater.

The overview map below as always provides more context.
» Read more

Could the Apollo 11 lunar module still be orbiting the Moon?

According to one researcher, at least two of the Apollo lunar modules that took astronauts up and down from the Moon could still be in lunar orbit, though their location is presently unknown.

His paper outlining the possible survival of the Apollo 11 LM Eagle can be found here. From his abstract:

The Apollo 11 “Eagle” Lunar Module ascent stage was abandoned in lunar orbit after the historic landing in 1969. Its fate is unknown. Numerical analysis described here provides evidence that this object might have remained in lunar orbit to the present day. The simulations show a periodic variation in eccentricity of the orbit, correlated to the selenographic longitude of the apsidal line. The rate of apsidal precession is correlated to eccentricity. These two factors appear to interact to stabilize the orbit over the long term.

More details here.

Hat tip to reader Mike Nelson, who sent me this story today. I am certain I reported it previously, but searching on Behind the Black failed to find it, so I decided to post again. As the researcher concludes:

Wouldn’t it be amazing if we could find this amazing little vessel and bring her back to Earth!!!!

Blobs in space

Blobs in space
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken by the Hubble Space Telescope and released today by the science team. From the caption:

This image shows a small region of the well-known nebula Westerhout 5, which lies about 7000 light-years from Earth. Suffused with bright red light, this luminous image hosts a variety of interesting features, including a free-floating Evaporating Gaseous Globule (frEGG). The frEGG in this image is the small tadpole-shaped dark region in the upper left. This buoyant-looking bubble is lumbered with two rather uninspiring names — [KAG2008] globule 13 and J025838.6+604259.

FrEGGs are a particular class of Evaporating Gaseous Globules (EGGs). Both frEGGs and EGGs are regions of gas that are sufficiently dense that they photoevaporate less easily than the less compact gas surrounding them. Photoevaporation occurs when gas is ionised and dispersed away by an intense source of radiation — typically young, hot stars releasing vast amounts of ultraviolet light. EGGs were only identified fairly recently, most notably at the tips of the Pillars of Creation, which were captured by Hubble in iconic images released in 1995. FrEGGs were classified even more recently, and are distinguished from EGGs by being detached and having a distinct ‘head-tail’ shape. FrEGGs and EGGs are of particular interest because their density makes it more difficult for intense UV radiation, found in regions rich in young stars, to penetrate them. Their relative opacity means that the gas within them is protected from ionisation and photoevaporation. This is thought to be important for the formation of protostars, and it is predicted that many FrEGGs and EGGs will play host to the birth of new stars.

The bright red edges of these blobs are places where ionization is occurring, which tells us that the young hot star causing it is to the top, beyond the edge of the picture. Its radiation is also likely causing the blob’s tabpole shape as material is pushed downward away from the star.

South Korea’s Danuri orbiter enters lunar orbit

South Korea’s first lunar orbiter, dubbed Danuri, has successfully entered lunar orbit after a four-month journey designed to save fuel and weight.

The Danuri spacecraft was expected to begin entering lunar orbit at on Friday (Dec. 17) at 2:45 p.m. EST (1945 GMT, 2:45 a.m. Dec. 17 in South Korea), according to a statement (opens in new tab) from the Korea Aerospace Research Institute (KARI). The maneuver, the first of five planned engine burns through Dec. 28 to refine Danuri’s orbit around the moon, will clear the way for the probe to get started on its lunar science objectives.

Danuri, also known as the Korea Pathfinder Lunar Orbiter (KPLO), began its long and circuitous journey to the moon on Aug. 4, launching on a SpaceX Falcon 9 rocket from Florida’s Cape Canaveral Space Force Station. The moon probe has traveled over 3.3 million miles (5.4 million kilometers) on its journey so far, KARI officials have said.

Its six instruments, including one American camera designed to look into the permanently shadowed craters on the Moon, will study the Moon from a polar orbit.

The edge of the Martian south pole ice cap

The edge of the Martian south pole ice cap
Click for full image.

Cool image time! The photo to the right, rotated, cropped, reduced, and sharpened to post here, was taken on September 4, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The MRO science team labeled this simply “Diverse Terrain,” an apt description but woefully incomplete.

Though the grade here goes uphill to the south, there are ups and downs along the way. The flat areas near the top as well that band near the bottom appear to be the oldest terrain, with the rough hollows appearing to be places where that flat material has sublimated or eroded away.

This terrain is in the very high southern latitudes. South is to the bottom of this picture, with the south pole of Mars about 380 miles away. Thus, that eroding top layer is likely disappearing because it has either water ice or dry ice within it, and over time it sublimates away.

The picture itself was taken in winter, when the entire surface is likely covered with a thin mantle of dry ice that fell as snow with the coming of colder temperatures. A wider view of this region in the spring, taken by MRO’s context camera, shows that this mantle, now appearing like white frost, appears largely confined to the higher terrain. Apparently, the annual sublimation of this dry ice mantle is linked somehow to the erosion of this flat terrain.

The additional location information provided by overview map below helps explain why this terrain is so diverse.
» Read more

A barred spiral galaxy with distorted galaxy

A barred spiral galaxy
Click for full image.

Cool image time! The photo to the right, reduced and cropped to post here, was taken by the Hubble Space Telescope and shows a barred spiral galaxy about 214 million light years away.

Scientists used NASA’s Hubble Space Telescope to image NGC 6956 to study its Cepheid variable stars, which are stars that brighten and dim at regular periods. Since the period of Cepheid variable stars is a function of their brightness, scientists can measure how bright these stars appear from Earth and compare it to their actual brightness to calculate their distance. As a result, these stars are extremely useful in determining the distance of cosmic objects, which is one of the hardest pieces of information to measure for extragalactic objects.

The press release of course focuses on this magnificent barred spiral. I however want to draw your attention to the smaller galaxy in the white box.

background distorted galaxy

Since we do not know the distance to this distorted galaxy, we do not know if its distortion is caused by the barred spiral. It could be the bigger galaxy’s gravity is pulling material away.

More likely, based on the shape of this smaller galaxy, is that it is many light years farther away — which is why it looks so much smaller — and has been distorted because it is actually a collusion of two galaxies. The two bright nuclei with the red dust between strongly suggests such a collusion.

I highlight this background galaxy because it illustrates the importance when looking at any Hubble image to look at everything. To coin a phrase, there is gold in them thar hills, if you make the effort to look.

NASA loses contact with one hurricane satellite in constellation of eight

NASA has lost contact with one of the eight CYGNSS satellites it uses to track and measure hurricanes worldwide.

The remaining seven satellites that comprise the CYGNSS constellation remain operational and have continued collecting scientific data since FM06 went incommunicado last month, according to NASA’s primary statement about the incident. The constellation’s science work can continue without FM06, but if the team can’t reconnect with the spacecraft, the loss will reduce the spatial coverage of CYGNSS, which until November provided nearly gap-free coverage of Earth.

At the moment engineers do not know why contact was lost, or if they can regain it.

Astronomers determine that two super-Earths are not as rocky as previously believed

Using observations from both the Hubble Space Telescope and the now retired Spitzer infrared space telescope, astronomers now think that two super-Earth-sized explanets are not as rocky as previously believed, and are in fact liquid worlds with as much as half their make-up comprised of water. From the press release:

Water wasn’t directly detected at Kepler-138 c and d, but by comparing the sizes and masses of the planets to models, astronomers conclude that a significant fraction of their volume – up to half of it – should be made of materials that are lighter than rock but heavier than hydrogen or helium (which constitute the bulk of gas giant planets like Jupiter). The most common of these candidate materials is water.

“We previously thought that planets that were a bit larger than Earth were big balls of metal and rock, like scaled-up versions of Earth, and that’s why we called them super-Earths,” explained Björn Benneke, study co-author and professor of astrophysics at the University of Montreal. “However, we have now shown that these two planets, Kepler-138 c and d, are quite different in nature and that a big fraction of their entire volume is likely composed of water. It is the best evidence yet for water worlds, a type of planet that was theorized by astronomers to exist for a long time.”

With volumes more than three times that of Earth and masses twice as big, planets c and d have much lower densities than Earth. This is surprising because most of the planets just slightly bigger than Earth that have been studied in detail so far all seemed to be rocky worlds like ours. The closest comparison, say researchers, would be some of the icy moons in the outer solar system that are also largely composed of water surrounding a rocky core.

This data simply underlines a basic point: The information we have of all exoplanets is sparse, practically nil. Any conclusions about their make-up is an educated guess, at best. Even now the conclusion that these are water worlds should be treated with great skepticism.

1 45 46 47 48 49 277